2020 (2) 4

https://doi.org/10.15407/polymerj.42.02.104

SOLVENT EFFECTS ON PHOTOPHYSICAL PROPERTIES OF ORGANIC DYES IN THE POLYMER MATRIX

T.V. Bezrodna,

Institute of Physics NAS of Ukraine, 46, Nauki av., Kyiv, 03680 Ukraine

V.I. Bezrodnyi,

Institute of Physics NAS of Ukraine, 46, Nauki av., Kyiv, 03680, Ukraine

A.M. Negriyko,

Institute of Physics NAS of Ukraine, 46, Nauki av., Kyiv, 03680, Ukraine

L.F. Kosyanchuk,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

e-mail: lkosyanchuk@ukr.net

ORCID: 0000-0002-3617-9538

O.I. Antonenko,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

O.O. Brovko

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

e-mail: brovko@nas.gov.ua

ORCID: 0000-0003-0238-1137

Polym. J., 2020, 42, no. 2: 104-113.

Section: Physics of polymers.

 

Language: Russian.

Abstract:

Effects of the solvents, different by physical parameters, on the association processes and spectral properties of organic dyes, doped to the polymer matrix have been investigated. The polyurethane acrylate (PUA) media with the xanthene dyes have been studied; the conditions for the dye associate formation have been determined by means of optical spectroscopy. Widely used organic compounds, namely, Rhodamine 6G (Rh6G) and Rhodamine (RhB), with efficient spontaneous and stimulated emission in liquid and solid-state solutions have been chosen as laser dyes. The absorption spectral curves of the dye polymer solutions allowed to analyze the aggregation degree of the Rh6G and RhB molecules in PUA. Monotonous growth in the ratio of absorption cross-sections for the monomer and dimer forms has been observed with an increase of the solvent dielectric permeability. The solvent effects the spectral characteristics of the xanthene dyes even after its total removal from the polymer mixture. The increase of solvent polarity results in the bathochromic shifts of luminescence maxima, growth of the Stokes shifts, and also in a decrease of the Rh6G and RhB dye destruction degree during the process of the PUA radical photopolymerization. Despite low polar characteristics of the PUA and removal of the solvents from oligourethane acrylate on a stage of the production, the dye molecules remain solvated by the negligibly small traces of solvents. The distribution homogeneity of dye monomer molecules in the polymer media plays also an important role. To provide high amplification coefficients for the polymer-based active media and considerable predominance of the monomer quantity over the dimers in the case of the xanthene dyes, the solvents of high polarity have been shown to be used in the synthesis process. The use of these solvents provides.

Key words: dye, polymer, radical photopolymerization.

 

 

 

REFERENCES

  1. Gromov D.A., Dyumaev K.M., Manenkov A.A., Maslyukov A.P., Matyushin G.A., Nechitailo V.S., Prokhorov A.M. Efficient plastic-host dye lasers. J. Opt. Soc. Am. B, 1985, 2, no. 7: 1028–1031. https://doi.org/10.1364/JOSAB.2.001028
  2. Bezrodnyi V.I., Przhonskaya О.V., Tikhonov Е.A., Вondar М.V., Shрak М.Т. Active and Passive Polymeric Laser Elements Utilizing Organic Dyes. J. Quantum. Electron., 1982, 9, no. 12: 2455–2464. http://dx.doi.org/10.1070/QE1982v012n12ABEH006296
  3. Vogel R., Harvey M., Edwards G., Meredith P., Heckenberg N., Trau M., Rubinsztein-Dunlop H. Dimer-to-monomer transformation of rhodamine 6G in aqueous PEO-PPO-PEO block copolymer solutions. Macromolecules. 2002, 35, no. 6: 2063–2070. https://doi.org/10.1021/ ma010995l
  4. Nilsson D., Nielsen T., Kristensen A. Solid state microcavity dye lasers fabricated by nanoimprint lithography. Review of Scientific Instruments, 2004, 75, no. 11: 4481–4486. DOI: 10.1063/1.1794411
  5. Terenin А.Н. Fotonika molekul krasitelei (Rus.). Leningrad, Nauka, 1967: 182-187.
  6. 6. Dyumaev K.M., Manenkov A.A., Maslyukov A.P., Matyushin G.A., Nechitailo V.S., Prokhorov A.M. Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities. Opt. Soc. Am. B, 1992, 9, no. 1: 143-151. https://doi.org/10.1364/JOSAB.2.001028
  7. Yuzhakov V.I. Assoziaziya molekul krasiteley i ee spektroskopicheskoe proyavlenie, Uspehi khimii. (Rus.), 1970, 48, no. 11: 2007–2033.
  8. 8. Ishchenko A.A. Molecular engineering of dye-doped polymers for o Polym. Adv. Technol., 2002, 13, no. 10–12: 744–752. https://doi.org/10.1002/pat.269
  9. Nikolaev S.V., Pozhar V.V., Dzyubenko M.I. Research of new solid-state active media on the basis of industrial polyurethane compounds, activated by dyes, Radiofizika i elektronika (Rus.), 2012, 17, no. 2: 80–86. http://dspace.nbuv.gov.ua/handle/123456789/105885
  10. 10. Pavlopoulos T. Scaling of dye lasers with improved laser dyes. Progress in Quantum Electronics, 2002, 26, no. 4: 193–224. DOI: 10.1016/S0079-6727(02)00005-8
  11. 11. Kosyanchuk L.F., Stratilat M.S., Kozak N.V., Bezrodna T.V.Effects of polyurethane polymer polarity on spectral and photophysical properties of phenalenone dyes. Dipole moment estimations for the ground and excited states. Polymer J. (Rus.), 2015, 37, 4: 354–361. http://nbuv.gov.ua /UJRN/Polimer_2015_37_4_7
  12. Bezrodnyi V.I., Derevyanko N.A., Ishchenko A. A., Slominsky Yu.L. Polymer passive laser switches for stimulated emission in the region of 1.3 micron. J Quantum. Electron., 1995, 22, no. 8: 853–855. http://dx.doi.org/10.1070/QE1995v025n08ABEH000477
  13. Bezrodnyi V.I., Tikhonov Е.A. Polymer passive Q-switch. J. Quantum. Electron., 1986, 13, no. 12: 2486–2490. http://dx.doi.org/10.1070/QE1986v016n12ABEH008515
  14. Bezrodnyi V.I., Bondar M.V., Kozak G.Yu.,  Przhonskaya O.V.,  Tikhonov E.A. Dye-activated polymer media for frequency-tunable lasers (review). J. Appl. Spectr., 1989, 50, no. 5: 711–727. DOI: https:/ /doi.org/10.1007/BF00664400
  15. 15. Rekha R.K., Ramalingam A. Optical nonlinear properties and optical limiting effect of metanil yellow. J. Engg. & Applied Sci., 2009, 2, no. 2: 285–291. DOI:10.3844/ajeassp. 2009.285.291
  16. Nahida J.Hameed Al-Mashhadan, Mohamad S.. Study of Degradation Effect on Physical Properties of Methyl Orange Doped PMMA. Eng. & Tech. Journal, 2011, 29, no. 1: 20–32., ISSN: 16816900 24120758
  17. 17. Rahn M., King T.A. Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and polymethyl methacrylate host media. Appl. Optics., 1995, 34, no. 36: 8260–8270. https://doi.org/10.1364/AO.34.008260
  18. Bakhshiev N.G. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Opt. Spektrosk., (Rus.), 1964, no. 16: 821–832.
  19. Chamma A., Viallet P. Determination du moment dipolaire d’une molecule dans un etat excite singulet. C.R. Acad. Sci. Paris Ser. C., 1970, no. 270: 1901–1904.
  20. 20. Bezrodnyi V.I., Ishchenko A.A. Aktive laser media based on coloured polyurethane. J. Quantum. Electron., 2000, 30, no. 12: 1043–1048. http://dx.doi.org/10.1070/ QE2000v030n12ABEH001862
  21. 21. Rahn M.D., King T.A., Gorman A.A. Hamblett I.Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers. A Optics., 1997, 36, no. 24: 5862–5871. https://doi.org/10.1364/AO.36.005862
  22. 22. Ishchenko A.A. Structure and luminescence-spectral characteristics of polymethine dyes (Rus.), Naukova Dumka, Kiev,
  23. 23. Ishchenko A. Physicochemical aspects of the creation of modern light-sensitive materials based on polymethine dyes. Theoretical and Experimental Chemistry, 1998, 34, no. 4: 191–210. DOI https://doi.org/10.1007/BF02523249