2020 (4) 1

https://doi.org/10.15407/polymerj.42.04.245
COPOLYMERS AND INTERPENETRATING POLYMER
NETWORKS OF THERMOREACTIVE NITROGEN-CONTAINING
RESINS. MINI REVIEW
A.M. FAINLEIB
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv 02160, Ukraine
e-mail: fainleib@i.ua
ORCID: 0000-0001-8658-4219
Polym. J., 2020, 42, no. 4: 245-253.
Section: Review.
Language: English.

Abstract:
In a short review the effective methods of optimization of structure and properties of high-performance polymers obtained from thermoreactive nitrogen-containing resins such as benzoxazines, bismaleimides, cyanate esters have been analysed. High crosslinked density copolymer thermosets are synthesized through chemical interactions between reactive functional groups, which belong to the monomers/oligomers used. The different possible processes such as copolymerization or formation of interpenetrating polymer networks are discussed. The high-performance polymers and composites from thermoreactive nitrogen-containing resins are effectively used in aerospace industry and microelectronics as materials possessing high thermal and thermooxidative stability, radiation and chemical resistance, low water absorption, low dielectric loss, high dimension stability and high adhesion to different substrate. The performance characteristics of this kind of materials can be controlled by changing their composition, temperature-time curing schedule, using catalytic systems.

Keywords: copolymers, IPNs, thermoreactive resins, benzoxazine, bismaleimide, cyanate ester resins.

REFERENCES
1. Riess G., Schwob J. M., Guth G., Roche M., Lande B. Ring opening polymerization of benzoxazines – a new route to phenolic resins, In book: Advances in polymer synthesis. Eds.: B.M. Culbertson, J.E. Mcgrath, New York: Plenum Press, 1985: 27–49. ISBN 978-1-4613-2121-7.
2. Handbook of Benzoxazine Resins. Eds.: H. Ishida, T. Agag, Elsevier, 2011. ISBN 9780444537911.
3. Chaisuwan T., Ishida H. High‐performance maleimide and nitrile‐functionalized benzoxazines with good processibility for advanced composites applications. J. Appl. Polym. Sci., 2006; 101: 548–558. https://doi.10.1002/app.23509
4. Ishida H., Ohba S. Thermal analysis and mechanical characterization of maleimide‐functionalized benzoxazine/epoxy copolymers. J. Appl. Polym. Sci., 2006; 101: 1670–1677. https://doi.org/10.1002/app.22499
5. Agag T., Takeichi T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. J. Polym. Sci. Part A: Polym Chem., 2006, 44: 1424–1435. https://doi.org/10.1002/pola.21245
6. Liu Y.-L., Yu J.-M. Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 1890–1899. https://doi.org/10.1002/pola.21290
7. Liu Y.-L., Chou C.-I. High performance benzoxazine monomers and polymers containing furan groups. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 5267–5282. https://doi.org/ 10.1002/pola.21023
8. Liu Y., Zheng S. Inorganic–organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 1168–1181. https://doi.org/10.1002/pola.21231
9. Arza C.R., Ishida H., Maurer F.H.J. Quantifying Dispersion in Graphene Oxide/Reactive Benzoxazine Monomer Nanocomposites. Macromolecules, 2014, 47: 3685–3692. https://doi.org/10.1021/ma500334j
10. Zeng M., Wang J., Li R., Liu J., Chen W., Xu Q., Gu Y. The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polymer, 2013, 54: 3107-3116. https://doi.org/10.1016/j.polymer.2013.03.069
11. Lin Yu., Stone C.A., Shaw S.J., Song M. Corner‐and Side‐Opened Cage Silsesquioxanes: Structural Effects on the Materials Properties. Eur. J. Inorg. Chem. 2020, No 9: 737-742. https://doi.org/10.1002/ejic.201901182
12. Chen Q., Xu R., Yu D. Multiwalled carbon nanotube/polybenzoxazine nanocomposites: preparation, characterization and properties. Polymer, 2006, 47: 7711–7719. https://doi.org/10.1016/j.polymer.2006.08.058
13. Rozenberg B.A., Boiko G.N., Morgan R.J., Shin E.E. The cure mechanism of the 4,4’-(N,N’-bismaleimide)diphenylmethane-2,2’-diallylbisphenol A system. Polym. Sci. Part B: Polym. Phys., 2001, 43: 386–399.
14. Abadie M.J.M., Xiong Y., Boey F.Y.C. UV photo curing of N,N’-bismaleimido-4,4’-diphenylmethane. Eur. Polym. J., 2003, 39: 1243-1247. https://doi.org/10.1016/S0014-3057(02)00367-1
15. Shimp D.A., Christenson J.R., Ising S.J. Cyanate esters – an emerging family of versatile composite resins. In book: Proceedings of the 34th Annual International SAMPE Symposium, 1989, 222–223.
16. Chemistry and technology of cyanate ester resins. I. Hamerton (Ed.), London: Chapman & Hall, 1994. ISBN 0 7514 0044 0.
17. Hamerton I., Hay J.N. Recent Technological Developments in Cyanate Ester Resins. High Perform. Polym., 1998, 10: 163–174. https://doi.org/10.1088/0954-0083/10/2/001
18. Nair C.P.R., Mathew D., Ninan K.N. Cyanate Ester Resins, Recent Developments. Adv. Polym. Sci., 2000, 155: 1–99. https://doi.org/10.1007/3-540-44473-4_1
19. Thermostable polycyanurates. Synthesis, modification, structure and properties. A. Fainleib (Ed.), New York: Nova Science Publisher, 2010. ISBN 978-160876-907-0.
20. McConnell V.P. Resins for the Hot Zone, Part II: BMIs, CEs, benzoxazines and phthalonitriles. Composites World. High Perform. Compos., 2009, No 9: 49–54.
21. Fainleib A.M., Sergeeva L.M., Shantalii T.A. Triazinecontaining interpenetrating polymer networks. Comp. Polym. Mat., 1991, 50: 63–72.
22. Fainleib A., Grigoryeva O., Pissis P. Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrating polymer networks, Chapter 3. In book: Focus on natural and synthetic polymer science. C. Vasile, G.E. Zaikov (Eds.), New York: Nova Science Publishers, 2006: 49–84. ISBN 1-60021-115-1.
23. Iijima T., Kunimi T., Oyama T., Tomoi M. Modification of cyanate ester resin by soluble polyarylates. Polym. Int., 2003, 52: 773–782. https://doi.org/10.1002/pi.1146
24. Hwang J.W., Park S.D., Cho K., Kim J.K., Park C.E. Toughening of cyanate ester resins with cyanated polysulfones. Polymer, 1997, 38: 1835–1843. https://doi.org/10.1016/S0032-3861(96)00715-X
25. Kim Y.S., Min H.S., Choi W.J., Kim S.C. Dynamic mechanical modeling of PEI/dicyanate semi‐IPNs. Polym. Eng. Sci., 2000, 40: 665–675. https://doi.org/10.1002/pen.11197
26. Harismendy I., Rio M.D., Marieta C., Gavalda J., Mondragon I. Dicyanate ester–polyetherimide semi‐interpenetrating polymer networks. II. Effects of morphology on the fracture toughness and mechanical properties. J. Appl. Polym. Sci., 2001, 80: 2759–2767. https://doi.org/10.1002/app.1391
27. Liu J., Ding N., Xu R., He Q., Shen J., Hu B. Cyanate ester resin modified by hydroxyl‐terminated polybutadiene: Morphology, thermal, and mechanical properties. Polym. Eng. Sci., 2011, 51: 1404–1408. https://doi.org/10.1002/pen.21952
28. Kim Y.S, Kim S.C. Properties of polyetherimide/dicyanate semi-interpenetrating polymer network having the morphology spectrum. Macromolecules, 1999, 32: 2334–2341.
https://doi.org/10.1021/ma981083v
29. Lee B.K., Kim S.C. Morphology and properties of semi‐IPNs of polyetherimide and bisphenol A dicyanate. Polym. Adv. Technol., 1995, 6: 402–412. https://doi.org/10.1002/pat.1995.220060 604
30. Iijima T., Katsurayama S., Fukuda W., Tomoi M. Modification of cyanate ester resin by poly(ethylene phthalate) and related copolyesters. J. Appl. Polym. Sci., 2000, 76: 208–219. https://doi.org/10.1002/(SICI)1097-4628(20000411)76:2<208::AID-APP10>3.0.CO;2-N.
31.Woo E.M., Shimp D.A., Seferis J.C. Phase structure and toughening mechanism of a thermoplastic-modified aryl dicyanate. Polymer, 1994, 35: 1658–1665. https://doi.org/10.1016/032-3861(94)90839-7
32. Hwang J.W., Cho K., Yoon T.H., Rark C.E. Effects of molecular weight of polysulfone on phase separation behavior for cyanate ester/polysulfone blends. J. Appl. Polym. Sci. 2000; 77: 921–927. https://doi.org/10.1002/(SICI)1097-4628(20000725)77:4<921::AID-APP28 >3.0.CO;2-4
33. Chang J.-Y., Hong J.-L. Morphology and fracture toughness of poly(ether sulfone)-blended polycyanurates. Polymer, 2000; 41: 4513–4521. https://doi.org/10.1016/S0032-3861(99)00616-3
34.Hwang J.W., Cho K., Rark C.E., Huh W. Phase separation behavior of cyanate ester resin/polysulfone blends. J. Appl. Polym. Sci., 1999; 74: 33–45. https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<33::AID-APP4>3.0.CO;2-Q
35. Recalde I.B., Campos A., Mondragon I., Gomez C.M. Miscibility and kinetic behaviour of cyanate resin/polysulfone blends. Macromol. Symp., 2001; 174: 175–185. https://doi.org/ 10.1022-1360(200108)174:<175:MAKBOC>2.0.ZU;2-9
36. Harismendy I., Del Rio M., Eceiza A., Gavalda J., Gomez C.M., Mondragon I. Morphology and thermal behavior of dicyanate ester‐polyetherimide semi‐IPNS cured at different conditions. J. Appl. Polym. Sci., 2000; 76: 1037–1047. https://doi.org/10.1002/ (SICI) 1097-4628(20000516)76:7<1037::AID-APP7>3.0.CO;2-Y
37. Srinivasan S.A., McGrath J.E. Synthesis and thermal stability of novel anion exchange resins with spacer chains. J.Appl. Polym. Sci., 1997; 64: 167–178. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1161::AID-APP16>3.0.CO;2-Z
38. Rau A.V., Srinivasan S.A., McGrath J.E., Loos A.C. Resin transfer molding (RTM) with toughened cyanate ester resin systems. Polym. Comp., 1998; 19: 166–179. https://doi.org/ 10.1002/pc.10088
39. Marieta C., Del Rio M., Harismendy I., Mondragon I. Effect of the cure temperature on the morphology of a cyanate ester resin modified with a thermoplastic: characterization by atomic force microscopy. Eur. Polym. J., 2000; 36: 1445–1454. https://doi.org/10.1016 /S0014-3057(99)00203-7
40. Chang J.-Y., Hong J.-L. Polar interaction in a cyanated poly(ether sulfone)-modified polycyanurate. Polymer, 1998; 39: 7119–7122. https://doi.org/10.1016/S0032-3861(98)00 185-2
41. Hillermeier R.W., Seferis J.C. Environmental effects on thermoplastic and elastomer toughened cyanate ester composite systems. J. Appl. Polym. Sci., 2000; 77: 556–567. https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<556::AID-APP11>3.0.CO;2-9
42. Brown J.M., Srinivasan S.A., Rau A.V., Ward T.C., McGrath J.E., Loos A.C., Hood D., Kranbeuhl D.E. Production of controlled networks and morphologies in toughened thermosetting resins using real-time, in situ cure monitoring. Polymer, 1996; 37: 1691–1696. https://doi.org/10.1016/0032-3861(96)83720-7
43. Tang Y., Liang G., Zhang Z., Han J. Performance of aluminum borate whisker reinforced cyanate ester resin. J. Appl. Polym. Sci., 2007 ; 106: 4131–4137. https://doi.org/10.1002/ app.26118
44. Dominguez D.D., Laskoski M., Keller T.M. Modification of Oligomeric Cyanate Ester Polymer Properties with Multi‐Walled Carbon Nanotube‐Containing Particles. Macromol. Chem. Phys., 2009; 210: 1709–1716. https://doi.org/10.1002/macp.200900343
45. Wooster T.J., Abrol S., MacFarlane D.R. Rheological and mechanical properties of percolated cyanate ester nanocomposites. Polymer, 2005; 46: 8011–8017. https://doi.org/ 10.1016/j.polymer.2005.06.106
46. Ren P., Liang G., Zhang Z., Lu T. ZnO whisker reinforced M40/BADCy composite. Composites, Part A. Appl. Sci. Manuf., 2006 ; 37: 46–53. https://doi.org/10.1016/j.compositesa.2005.05.018
47. Maroulas P., Kripotou S., Pissis P., Fainleib A., Bei I., Bershtein V., Gomza Yu. Molecular Mobility in Polycyanurate/Clay Nanocomposites Studied by Dielectric Techniques. J. Compos. Mater., 2009; 43: 943–958. https://doi.org/10.1177/0021998308097736
48. Anthoulis G.I., Kontou E., Fainleib A., Bei I. Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance. Mech. Comp. Mater., 2009; 45: 175–182. https://doi.org/10.1007/s11029-009-9073-x
49. Anthoulis G.I., Kontou E., Fainleib A., Bei I., Gomza Yu. Synthesis and characterization of polycyanurate/montmorillonite nanocomposites. J. Polym. Sci. Part B: Polym. Phys., 2008; 46: 1036–1049. https://doi.org/10.1002/polb.21436
50. Bershtein V.A., Fainleib A.M., Pissis P., Bei I.M., Dalmas F., Egorova L.M., Gomza Y.P., Kripotou S., Maroulas P., Yakushev P.N. Polycyanurate–organically modified montmorillonite nanocomposites: Structure–dynamics–properties relationships. J. Macromol. Sci. Part B: Polym. Phys., 2008; 47: 555–575. https://doi.org/10.1080/0022 2340801955545
51. Fainleib A., Bardash L., Boiteux G. Catalytic effect of carbon nanotubes on polymerization of cyanate ester resins. eXPRESS Polym. Let., 2009; 3: 477–482. https://doi.org/10.3144/ expresspolymlett.2009.59
52. Liang K., Li G., Toghiani H., Koo J.H., Pittman C.U.Jr. Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization. Chem. Mater., 2006; 18: 301–312. https://doi.org/10.1021/cm051582s
53. Cho H.-S., Liang K., Chatterjee S., Pittman C.U.Jr. Synthesis, Morphology and Viscoelastic Properties of Epoxy/Polyhedral Oligomeric Silsesquioxane (POSS) and Epoxy/Cyanate Ester/POSS Nanocomposites. J. Inorg. Organomet. Polym., 2011; 21: 128–142. https://doi.org/10.1007/s10904-010-9436-8
54. Pittman C.U. Jr., Li G.-Z., Ni H. Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol. Symp., 2003; 196: 301–325. https://doi.org /10.1002/masy.200390170
55. Liang K., Toghiani H., Li G., Pittman C.U. Jr. Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. J. Polym. Sci. Part A: Polym. Chem., 2005; 43: 3887–3898. https://doi.org/10.1002/pola.20861
56. Wright M.E., Petteys B.J., Guenthner A.J., Yandek G.R., Baldwin L.C., Jones C., Roberts M.J. Synthesis and chemistry of a monotethered-POSS bis(cyanate) ester: Thermal curing of micellar aggregates leads to discrete nanoparticles. Macromolecules, 2007; 40: 3891–3894. https://doi.org/10.1021/ma0703507
57. Lin Y., Jin J., Song M., Shaw S.J., Stone C.A. Curing dynamics and network formation of cyanate ester resin/polyhedral oligomeric silsesquioxane nanocomposites. Polymer, 2011; 52: 1716–1724. https://doi.org/10.1016/j.polymer.2011.02.041
58. Ma J., Li Q. Adv. Gelation Behavior, Morphology, Thermal and Viscoelastic Properties of Epoxy-Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites. Mater. Res., 2006; 11-12: 323–326. https://doi.org/10.4028/www.scientific.net/AMR.11-12.323
59. Lu T., Liang G., Guo Z. Preparation and characterization of organic–inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. J. Appl. Polym. Sci., 2006 ; 101: 3652–3658. https://doi.org/10.1002/app.22743
60. Bershtein V., Fainleib А., Egorova L., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Starostenko O., Yakushev P., Yagovkina M., Saiter J.-M. The impact of ultra-low amounts of introduced reactive POSS nanoparticles on structure, dynamics and properties of densely cross-linked cyanate ester resins. Eur. Polym. J., 2015 ; 67: 128–142. https://doi.org/ 10.1016/j.eurpolymj.2015.03.022
61. Bershtein V., Fainleib А., Egorova L., Gusakova K., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Yakushev P., Lavrenyuk N. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins. Nanoscale Res. Let., 2015; 10:165, 1–15. https://doi.org/10.1186/s11671-015-0868-5
62. Fan J., Hu X., Yue C.Y. Thermally stabilized bismaleimide–triazine resin composites for 10-GHz level high-frequency application. Polym. Int., 2003; 52: 15-22. https://doi.org/ 10.1177/0954008317732396
63. Wu G., Kou K., Li N., Shi H., Chao M. Electrically conductive adhesive based on bismaleimide‐triazine resin filled with microcoiled carbon fibers. J. Appl. Polym. Sci., 2013; 128: 1164–1169. https://doi.org/10.1002/app.38348
64. Guan Q., Gu A., Liang G., Yuan L., Liao F., Gong Y. Curing kinetics and mechanism of novel high performance hyperbranched polysiloxane/bismaleimide/cyanate ester resins for resin transfer molding. J. Appl. Polym. Sci., 2011; 122: 304–312. https://doi.org/ 10.1002/app.34073
65. Zeng X., Yu S., Sun R. Thermal behavior and dielectric property analysis of boron nitride‐filled bismaleimide‐triazine resin composites. J. Appl. Polym. Sci., 2013; 128: 1353–1359. https://doi.org/10.1002/app.38276
66. Kimura H., Ohtsuka K., Matsumoto A. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin. eXPRESS Polym. Let., 2011; 5: 1113–1122. https://doi.org/10.3144/expresspolymlett.2011.108
67. Kimura H., Ohtsuka K., Matsumoto A. New Thermosetting Resin from Benzoxazine and Cyanate Ester Resin. Adv. Polym. Technol., 2013; 32: E651–E659. https://doi.org/ 10.1002/adv.21308
68. Kumar K.S.S., Nair C.P.R., Ninan K.N. Investigations on the cure chemistry and polymer properties of benzoxazine–cyanate ester blends. Eur. Polym. J., 2009; 45: 494–502. https://doi.org/10.1016/j.eurpolymj.2008.11.001
69. Wang M.W., Jeng R.J., Lin C.H. Origin of the Rapid Trimerization of Cyanate Ester in a Benzoxazine/Cyanate Ester Blend. Macromolecules, 2015; 48: 2417−2421. https://doi.org/ 10.1021/acs.macromol.5b00334
70. Karikal Chozhan C., Chandramohan A., Alagar M. Development and characterization of 1,1-bis(3-methyl-4-hydroxyphenyl) cyclohexane-based benzoxazine and cyanate ester hybrid polymer matrices: Thermal and morphological properties. Polym. Polym. Comp., 2019; 27: 609–618. https://doi.org/10.1177/0967391119853747
71. Wang Y., Kou K., Wu G., Zhuo L., Li J., Zhang Y. The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer. Polymer, 2015; 77: 354–360. https://doi.org/10.1016/j.polymer.2015.09.059