2020 (4) 7

https://doi.org/10.15407/polymerj.42.04.292

COMPOSITION OF α-TOCOPHERYL ACETATE WITH MICELLAR NANOCARRIERS AND THE POSSIBILITY OF ITS USE AS A BIOLOGICALLY ACTIVE ADDITIVE

 N.M. Permyakova,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

ORCID: 0000-0002-7622-1059

e-mail: permyakova@ukr.net

T.B. Zheltonozhskaya,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

ORCID: 0000-0001-5272-4244

e-mail: zheltonozhskaya@ukr.net

V.I. Karpovskyi,

National University of Life and Environmental Sciences of Ukraine, 17, Heroiv Oborony str., Kyiv, 03041, Ukraine

ORCID: 0000-0003-3858-0111

R.V. Postoi,

National University of Life and Environmental Sciences of Ukraine, 17, Heroiv Oborony str., Kyiv, 03041, Ukraine

ORCID: 0000-0001-5278-2102

V.I. Maksin,

National University of Life and Environmental Sciences of Ukraine, 17, Heroiv Oborony str., Kyiv, 03041, Ukraine

ORCID: 0000-0001-8903-6744

S.V. Partsevskaya,

Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 60, Volodymyrska str., Kyiv, 01033, Ukraine

ORCID: 0000-0002-2055-6765

L.N. Grishchenko,

Faculty of Chemistry, Taras Shevchenko National University of Kyiv, 60, Volodymyrska str., Kyiv, 01033, Ukraine

ORCID: 0000-0002-0342-4859

D.O. Klymchuk,

M.G. Kholodny Institute of Botany NAS of Ukraine, 2, Tereshchenkivska str., Kyiv, 01004, Ukraine

ORCID: 0000-0002-7076-8213

V.V. Klepko,

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

ORCID: 0000-0001-8089-8305

e-mail: klepko_vv@ukr.net

 

Polym. J., 2020, 42, no. 4: 292-306.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Based on the asymmetric diblock copolymer (DBC) poly(ethylene oxide)/polyacrylic acid, effective, biocompatible and biodegradable micellar carriers were obtained for the delivery of vitamin E analogue, α-tocopheryl acetate (α-TOCA), in living organisms. The monitoring of the stability of micellar structures of the block copolymer and its composition with α-TOCA over time, in a saline solution and when the pH of the solution changes, was carried out. The stability of DBC micelles over time at pH = 3.5, partial disaggregation of micelles at pH = 9 and an increase in their aggregation in physiological solution were shown. The high stability of the α-TOCA/DBC composition formed in situ in time in the range of pH=3.5-9 and a significant decrease in its solutions of salting out effects in the presence of NaCl were established. The thermodynamic parameters of the process of the micelle formation of the pure α-TOCA in water/ethanol solution (95/5 v/v) as well as the size and morphology of its micellar structures were determined by light scattering and TEM methods. The initial α-TOCA micelles in water/ethanol solution were stable over a wide pH range, but their stability was much lower and the sensitivity to the presence of NaCl was much higher than that of DBC micelles. The dialysis method revealed the gradual release of the drug from the micellar carrier through a semipermeable membrane into the surrounding aqueous and aqueous-saline media. However, the rate and efficiency of α-TOCA release from the DBC micelles in an aqueous medium were significantly lower compared to a similar process of drug release from the pure α-TOCA dispersion. Thus, a possibility of providing of long-term controlled release of α-TOCA in the living organism due to the use of DBC micelles has been proven. Based on in vivo tests of the biological action of the composition on pregnant sows, its high bioavailability, rapid absorption, active participation in metabolic processes and positive effect on the reproductive qualities of sows compared to pure α-TOCA, were displayed, which improves the safety and productivity of newborn piglets.

 

Key words: diblock copolymer, α-tocopheryl acetate, micellar carrier, encapsulation/release, biological action.

 

REFERENCES
1. Mishra M. K. Applications of Encapsulation and Controlled Release. CRC Press, 2019: 474. https://doi.org/10.1201/9780429299520
2. Howard A.K., Vorup-Jensen T., Peer D. Nanomedicine. New York: Springer, 2016: 378. https://doi.org/10.1007/978-1-4939-3634-2
3. Parveen S.,Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8: 147–166. https://doi.org/10.1016/j.nano.2011.05.016
4. Sounderya N., Zhang Y. Use of core/shell structured nanoparticles for biomedical applications. Rec. Patent Biomed. Eng, 2008, 1: 34–42. https://doi.org/10.2174/1874764710801010034
5. Zheltonozhskaya T.B., Permyakova N.M., Kunitskaya L.R., Stojka R.S.., Klymchuk D.O., Maksin V.І., Iakubchak O.N. Bagatofunkczіonal`nі nanomaterіali dlya bіologії і medicini: molekulyarnij dizajn, sintez і zastosuvannya. Rozdіl 6.4. Pod red. R.S. Stojki. Kiїv: Nauk. Dumka, 2017, 266–300.
6. Zheltonozhskaya T., Partsevskaya S., Fedorchuk S., Klymchuk D., Gomza Yu., Permyakova N., Kunitskaya L. Micellar nanocontainers based on PAAm-b-PEO-b-PAAm triblock copolymers for poorly soluble drugs. Europ.Polym.J., 2013, 49: 405–418. https://doi.org/10.1016/j.eurpolymj.2012.10.028
7. Grigor`eva M.V. Polimerny`e sistemy` s kontroliruemy`m vy`svobozhdeniem biologicheski aktivny`x soedinenij. Bіotexnologіya, 2011, 4, no. 2: 9–23.
8. Bajpai A.K., Shukla S.K., Bhanu S., Kankane S. Responsive polymers in controlled drug delivery. Progr. Polym. Sci., 2008, 33: 1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005
9. XuM.-M., LiuR.-J.,YanQ. Biological Stimuli-responsive Polymer Systems: Design, Construction and Controlled Self-assembly. Chinese J. Polym. Sci. 2018, 36: 347–365. https://doi.org/10.1007/s10118-018-2080-4
10. Fundueanu G., Constantin M., Ascenzi P. Preparation and characterization of pH and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials, 2008, 29: 2767–2775. https://doi.org/10.1016/j.biomaterials.2008.03.025
11. Permyakova N., Zheltonozhskaya T., Revko O., Grischenko L. Self-assembly and metalation of pH-sensitive double hydrophilic block copolymers with interacting polymer components. Macromol. Symp, 2012, 317-318, no. 1: 63–74. https://doi.org/10.1002/masy.201100079
12. Permyakova N., Zheltonozhskaya T., Ignatovskaya M., Maksin V., Iakubchak O., Klymchuk D. Stimuli-responsive properties of special micellar nanocarriers and their application for delivery of vitamin E and its analogues. Coll. &Polym.Sci., 2018, 296: 295–307. https://doi.org/10.1007/s00396-017-4242-2
13. Permyakova N.M., Zheltonozhskaya T.B., Ignatovskaya M.V., Maksin V.I., Iakubchak O.N., Klymchuk D.O., Poliyan M.Ya., Grishchenko L.N. Mіceli podvіjnix gіdrofіl`nix blok-kopolіmerіv dlya dostavki pogano rozchinnix vіtamіnіv v zhivix organіzmax. Polіmernij zhurn., 2016, 38, no. 1: 81–90.
14. Cleaver G., Agilent Technologies, Inc. Biodegredable polymers. Analysis of biodegradable polymers by GPC/SEC. Application compendium. Agilent Technologies, Inc., US, 2015: 19.
15. Jing Z., Xu A., Liang Y.-Q., Zhang Z., Yu C., Hong P., Li Y. Biodegradable poly(acrylic acid-co-acrylamide)/poly(vinyl alcohol) double network hydrogels with tunable mechanics and high self-healing performance. Polymers, 2019, 11: Art.952. https://doi.org/10.3390/polym11060952
16. Ignatovskaya M.V., Iakubchak O.N., Maksin V.I., Zheltonozhskaya T.B., Permyakova N.M. Vpliv vіtamіnu E u vodorozchinnіj formі na prirіst zhivoї masi krolіv. Naukovij vіsnik Naczіonal`nogo unіversitetu bіoresursіv і prirodokoristuvannya Ukraїni. Serіya «Veterinarna medicina, yakіst` і bezpeka produkczії tvarinnicztva», 2015, no. 221: 87–91.
17. Maksin V I., Iakubchak O. M., Ignatovska M. V., Zheltonozhska T. B., Permyakova N.М., Kaplunenko V.G. Quality rabbit through the use of vitamin E in the diet in water soluble form. Industrial technologies and engineering, 2015, 22, no. 3: 373–376.
18. Li P., Li Z., Huang J. Water-soluble star brush copolymer with four arms composed of poly(ethylene oxide) as backbone and poly(acrylic acid) as side chain. Macromolecules, 2007, 40: 491–498. https://doi.org/10.1021/ma0621324
19. Shen H., Zang L., Eisenberg A. Thermodynamics of crew-cut micelleformation of polystyrene-b-poly(acrylicacid) diblockcopolymersin DMF/H2O mixtures. J. Phys. Chem. B., 1997, 101: 4697–4708. https://doi.org/10.1021/jp970105x
20. Makovetskiy V, Maksin V, Kurapova T, Vlasenko S. The investigation of antiradical and antioxidant activity of oxyсhroman and trimethylphenol MV-Derivatives. Life and Environmental Sciences, 2010, 1-2: 28–33, https://journals.nubip.edu.ua
21. Dibbern H-W., Müller R.M., Wirbitzki E. UV and IR spectra.Pharmaceutical substances (UV and IR) and pharmaceutical and cosmetic excipients (IR). Aulendorf (Germany): ECV – Editio Cantor Verlag, 2002: 1434.
22. Amazan D., Cordero G., López-Bote C. J., Lauridsen C., Rey A. I. Effects of oral micellized natural vitamin E (D-α-tocopherol) v. synthetic vitamin E (DL-α-tocopherol) in feed on α-tocopherol levels, stereoisomer distribution, oxidative stress and the immune response in piglets. Animal, 2014, 8-3: 410–419. https://doi.org/10.1017/S1751731113002401
23. Zheltonozhskaya T., Partsevskaya S., Gorchev V., Klymchuk D. Processes of encapsulation and crystallization of prednisolone in PAAm-b-PEO-b-PAAm micellar solutions. Mol. Cryst. Liq. Cryst., 2014, 590: 140–148. https://doi.org/10.1080/15421406.2013.874155
24. Gordon Dzh. Organicheskaya ximiya rastvorov e`lektrolitov. M.: Mir, 1979: 712.
25. Kolakkandy S., Pratihar S., Aquino A.J.A., Wang H., Hase W.L. Properties of Complexes Formed by Na+, Mg2+, and Fe2+ Binding with Benzene Molecules J. Phys. Chem. A., 2014,118: 9500–9511. https://doi.org/10.1021/jp5029257
26. Salami1a S. A., Guinguina A., Agboola J. O., Omede A. A., Agbonlahor E. M. Tayyab U. Review: In vivo and postmortem effects of feed antioxidants in livestock: a review of the implications on authorization of antioxidant feed additives. Animal, 2016, 10, no. 8: 1375–1390. https://doi.org/10.1017/S1751731115002967