2021 (1) 3

https://doi.org/10.15407/polymerj.43.01.019
MISCIBILITY OF POLY(URETHANE-UREA) ELASTOMERS WITH CHLORINATED POLY(VINYL CHLORIDE)
T.L. MALYSHEVA,
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
e-mail: malysheva_tat@ukr.net
ORCID: 0000-0002-3046-6819
A.L. TOLSTOV,
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
e-mail: a.tolstov@ukr.net
ORCID: 0000-0001-6016-9308
Polym. J., 2021, 43, no. 1: 19-25.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Effect of a chemical structure of poly(ether-urethane-urea) (PUU) elastomers on a miscibility of their blends with chlorinated poly(vinyl chloride) (cPVC) has been studied by FTIR and DSC. The segmented PUU were synthesized by prepolymer approach in N,N-dimethylformamide (DMF) solution. PUU-1 was synthesized using poly(propylene glycol) (PPG) of Mn = 1000, mixture of 2,4- and 2,6-isomers of tolylenediisocyanate (TDI) in a ratio of 65:35 (by weight) and 4,4´-methylenedianiline as a chain extender at a molar ratio of 1:2:1. PUU-2 was prepared based on poly(tetramethylene glycol) (PTMG) of Mn = 1000, TDI and cyanoethylated ethylene diamine at a molar ratio of 2:3:1. The polymer-polymer blends were obtained via solution casting technique using DMF as a solvent. It was found a miscibility of the polymers enhances due to a formation of hydrogen or donor-acceptor bonding between polar NH urethane-urea or nitrile groups of hard PUU segments and chlorine of cPVC. According to DSC results the polymer-polymer systems stabilized by stronger donor-acceptor bonding are characterized by single glass transition temperature, Tg, a position of which is higher than that of the theoretical one, TFg, calculated in full composition range via Fox’s equation. When stabilization of polymer-polymer blend with 30 % (by weight) of cPVC performs by weaker hydrogen bonding we observed a formation of mixed phase and the composite is characterized by appearance of three relaxation transitions. Increasing cPVC content reduces a miscibility of the components and biphasic structure of the composites forms. Comparative analysis of experimental and theoretical (additive) tensile strength vs composition dependencies demonstrates an impact of donor-acceptor interface interactions on strength of the polymer composites obtained.

Keywords: poly(urethane-urea) elastomer, chlorinated poly(vinyl chloride), interfacial interactions, mechanical strength.

 

REFERENCES
1. Omelchenko S.I., Kadurina T.I. Modifitsirovannyie poliuretanyi. K.: Nauk. dumka, 1983: 225. (In Ukrainian).
2. Bélorgey G., Aubin M., Prud’homme R.E. Stadies of polyester/chlorinated poly(vinyl chloride) blends. Polymer, 1982, 23:1051–1056. https://doi.org/10.1016/0032-3861(82)90407-4.
3. Malysheva T.L., Matyushov V.F., Titov G.V., Dyakova A.N. Termoplastichnyie kompozityi na osnove hlorirovannogo polivinilhlorida i poliuretana. PolImerniy zhurnal,. 2005, 27 : 35–39. (In Ukrainian).
4. Malysheva T.L. Kogezionno-adgezionnyie svoystva kompozitsiy na osnove poliure-tanovogo elastomera i hlorvinilovogo polimera. Pitannya hImIYi ta hImIchnoYi tehnologIYi, 2014, 4: 68–73. (In Ukrainian).
5. Wei Wu, Xiao-lie Luo, De-zhu Ma. Miscibility of the segmented polyurethane blends with chlorinated poly(vinyl chloride). Eur. Polym. J., 1999, 35: 985–990. https://doi.org/10.1016/S0014-3057(98)00195-5.
6. Dana Garcia Blends of a chlorinated poly(vinyl chloride) with a polyurethane elastomer. J. Polym. Sci. B, 1986, 24: 1577–1586. https://doi.org/10.1002/polb.1986.090240714.
7. Ann T.O., Han K.T., Jeong H.M., Lee S.W. Miscibility of thermoplastic polyurethane elastomers with chlorine‐containing polymers. Polym. Int., 1992, 229: 115–120. https://doi.org/10.1002/pi.4990290209.
8. Malysheva T.L. Mikro- i nanokompozityi na osnove hlorvinilovih polimerov i poliuretanovyih elastomerov. Polimerniy zhurnal, 2010, 32: 229–238. (In Ukrainian).
9. Malysheva T.L., Golovan S.V, Klimchyk D.A. Interfacial interactions in nanostructured polymer-polymer blends. Nanosystems, nanomaterials, nanotechnologies, 2012, 10: 687–699. (In Ukrainian).
10. Маlysheva T.L., Tolstov A.L., Gres E.V. Miscibility of the polyurethane elastomer with poly(vinyl chloride). Polymer journal, 2019, 41: 96–100. https://doi.org/10.15407/polymerj.41.02.096. (In Ukrainian).
11. Маlysheva T.L. Nanoheterogeneous structure formation in polyurethane elastomer –poly(vinyl chloride) blends. Proc. NAP, 2016, 02NSA01(1-4). https://doi.org/10.1109/NAP.2016.7757302 (In Ukrainian).
12. Shtompel V.I., Kercha Yu.Yu. Struktura lineynyih poliuretanov. Kiev: Nauk. dumka, 2008: 246. (In Ukrainian).
13. Hranovskiy V.A. Mezhmolekulyarnyie vzaimodeystviya v oligouretanah s ionogennyimi gruppami razlichnoy himicheskoy prirodyi aniona. Dokladyi AN SSSR, 1985, 285: 406–410.
(In Ukrainian).
14. Zheng Xiaojiang, Pu Henry H., Yang Yanheng. A FT-IR study on NBR / PVC, BR/PVC,
and BR / PVC / NBR blends. J. Polym. Sci. C, 1989, 27: 223–227. https://doi.org/10.1002/pol.1989.140270702.
15. Fox T.G. Influence of dіluent and copolymer composition on the glass transition temperature of a polymer system. Bull. Am. Phys. Soc., 1956, 1: 23–128.
16. Kwei T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett., 1984, 22: 307–313. https://doi.org/10.1002/pol.1984.130220603.
Received 02.02.2021