2021 (1) 6
https://doi.org/10.15407/polymerj.43.01.041
USING THE METHOD OF PYROLYTIC MASS SPECTROMETRY IN THE STUDY OF BIODEGRADABLE POLYMERIC MATERIALS
V.V. BOYKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0002-5527-0468
S.V. RIABOV,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: sergii.riabov@gmail.com
ORCID: 0000-0003-2996-3794
L.V. KOBRINA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: kobrina.larisa@gmail.com
ORCID: 0000-0001-6801-0801
T.V. DMITRIEVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0002-3526-8395
V.I. BORTNITSKY,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0003-4954-6533
Polym. J., 2021, 43, no. 1: 41-53.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The results of pyrolytic mass spectrometry studies of biodegradable polymeric materials based on polyolefins and segmented polyurethanes with various functional additives are summarized. The structure and composition of initial and after exposure in soil, climate chamber and after exposure to microorganisms (bacteria, yeast) composites are characterized.
Keywords: biodegradable polymeric materials, pyrolytic mass spectrometry, polyolefin, polyurethane.
REFERENCES
1. Handbook of Biodegradable Polymers / Ed Catia Bastioli. Walter de Gruyter GmbH & Co KG, Berlin / Boston, 2020: 572. ISBN: 9781501519215
2. Market study on Bio-based Polymers in the World Capacities, Production and Applications: Status Quo and Trends towards 2020 / Eds A. S.Mirabal, L. Scholz, M. Carus. Nova-Institut GmbH, 2013: 362.
3. Vasnev V.A. Biodegradable polymers. VMS, 1997, 39, no. 12: 2073–2086.
4. Suvorova A. I., Tyukova I .S., Trufanova E. I. Biodegradable starch-based polymeric materials. RUSS CHEM REV, 2000, 69, no. 5: 451–459. https://doi.org/10.1070/RC2000v069n05ABEH000505
5. Kobrina L.V., Riabov S.V., Kercha Yu.Yu. Principles and ways of forming biodegradable polymeric materials. Composite polymeric materials, 2003, 25, no. 5: 86–94.
6. Beinon Dzh. Mas-spectrometriya i eyo primenenie v organicheskoi chimii [Mass spectrometry and its use in organic chemistry]. Per s anhl. Myr, Moskva, 1964: 701.
7. Khmelnitsky R.A., Lukashenko I.M., Brodsky E.S. Piroliticheskaya mas-spectrometriya vysokomolekulyrnyh soedinenii [ Pyrolytic mass spectrometry of high molecular weight compounds]. Chemistry, Moskva, 1980: 280.
8. Hordon A., FordR. Sputnyk khymyka [Companion of chemist]. Per. s anhl. Myr, Moskva, 1976: 541.
9. Sidel’nikov V.N., Gur’yanova L.V., Utkin V.A., Malakhov V.V., Kolchin A.M. Katalogsokrashchennyh mass-spektrov [Short catalogue of mass spectra.]. Nauka, Novosibirsk, 1981: 187.
10. Gardette J.-L., Rivaton A., Therias S. Photodegradation Processes in Polymeric Materials. Handbook of photochemistry and photophysics of polymer materials. Ed. by Norman S. Allen. John Wiley & Sons, , Inc. Hoboken, New Jersey, 2000: 569–603. https://doi.org/10.1002/9780470594179.ch15
11. Dmitrieva T.V.,Kobylinskiy S.M., Boiko V.V., Riabov S.V., Bortnitskiy V.I., Krymovska S.K., Nevmerzhitska G.F., Komljakova O.M. The influence of metal complexes on the basis of pectine on the degradability of polyethylene. Polymer journal, 2015, 37, no. 3: 263–268. https://doi.org/10.15407/polymerj.37.03.263
12. Dmitrieva T.V., Boiko V.V., Riabov S.V., Bortnitskiy V.I.,Gonchar M.V., Prokopiv T.M., Kercha Yu.Yu. Features of the influence of microorganisms on polyethylene modified by biodegradable additives. Reports of the National Academy of Sciences of Ukraine. 2013, no. 6: 122–125.
13. Boiko V.V., Dmitrieva T.V., Riabov S.V., Bortnitskiy V.I., Krymovska S.K., Nevmerzhitska G.F., Gonchar M.V., Prokopiv T.M. The effect of yeast – Ascomycetes Yarrowia lipolytica on polyolefins modified by degradable additives. Polymer journal, 2013, 35, no. 2: 140–144.
14. Mir mikrobov: in 3 t. [Microbial world: in 3 t. ] / Eds Ye.N. Kondrat’yeva, S.V. Shestakova. Myr, Moskva, 1979, 3: 486.
15. Gromov B.V., Pavlenko G.V. Ekologiya bakteriy: ucheb.posobiye [ Ecology of bacteria: textbook]. LGU, Leningrad, 1989: 248.
16. Madzak C., Gaillardin C., Beckerich J.M. Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J. Biotechnol., 2004, 109, no. 1–2: 63–81. https://doi.org/10.1016/j.jbiotec.2003.10.027
17. Boyko V.V., Riabov S.V., Kobrina L.V., Dmitrieva T.V., Shtompel´V.I., Gaiduk R.L., Kercha Yu.Yu.Segmented polyurethane biodegradation processes. Ukr. chem. journal. 2007; 73, no. 7: 51–60.
18. Arvitoyannis I. S. Totally and partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation, physical properties, and potential as food packaging materials. J.M.S. – Rev. Macromol. Chem. Phys. 1999, 39, no. 2: 205–215. https://doi.org/10.1081/MC-100101420
19. Thakore M., Desai S., Sarawade B.D., Devi S. Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal. 2001. 37, no. 1: 151–160. https://doi.org/10.1016/S0014-3057(00)00086-0
20. Raqueza J.-M., Delйglisea M., Lacrampea M.-F., Krawczaka P. Thermosetting (bio)materials derived from renewable resources: A critical review. Progress in Polymer Science. 2010; 35: 487–509. https://doi.org/10.1016/j.progpolymsci.2010.01.001
21. Shevchenko V.V., Barantsova A.V., Grishenko V.K., Busko N.A. Synthesis of reactive oligomers with functional groups and polymers based on vegetable oils. Polymer journal, 2011, 33, no. 2: 159–164.
22. Vilenskiy V.O., Kercha Yu.Yu., Dmitrieva T.V., Goncharenko L.A., Bortnicky V.I., Glieva G.E. Study of reactive stocks of polyepoxy and polyurethanes on the base of rapeseed oil. Polymer journal, 2011, 33, no. 1: 165–170.
23. Boiko V.V., Kobrina L.V., Riabov S.V., Bortnitskiy V.I., Vilenskiy V.O., Kercha Yu.Yu. Features of the chemical structure of urethane-containing polymers obtained using rapeseed polyol. Reports of the National Academy of Sciences of Ukraine. 2014, no.11: 120–124. https://doi.org/10.15407/dopovidi2014.11.116
24. Dodziuk H. Cyclodextrins and their Complexes. Chemistry, Analytical Methods, Applications. Weinheim: Wiley-VCH, Verlag GmbH & Co KGaA; 2006: 507. ISBN: 9783527312801. https://doi.org/10.1002/3527608982
25. Riabov S.V., Boiko V.V., Kobrina L.V., Dmitrieva T.V., Bortnitskiy V.I., Laptiy S.V., Kercha Yu.Yu. Study of urethane-containing composites modified with β-cyclodextin. Polymer journal, 2006, 28, no. 3: 187–194.
26. Riabov S.V., Shtompel´V.I., Kercha Yu.Yu.,Lebedev O.F. Chemical formation and structure of urethane-containing polymers based on β-cyclodextin. Polymer journal, 2005, 27, no. 1: 40–44.
27. Boiko V.V., Kobrina L.V., Riabov S.V., Kercha Yu.Yu. Research of polyurethane composites filled with natural polymers – polysaccharides. Voprosy Khimii I Khimicheskoi Tekhnologii. 2004, no. 6: 95–98.
28. Riabov S.V., Boiko V.V., Bortnitskiy V.I., Dmitrieva T.V., Kobrina L.V., Kercha Yu.Yu. Thermal mass-spectometry of polyurethane composition filled by chitosan. Polymer journal, 2005, 27, no. 3: 161–166.
29. Riabov S.V., Boiko V.V., Kobrina L.V., Bortnitskiy V.I., Shompel´V.I., Dmitrieva T.V., Kercha Yu.Yu. Study and characterization of polyurethane composition filled by polysaccharides. VMS, A. 2006, 48, no. 8: 1448–1461. https://doi.org/10.1134/S0965545X06080104