2021 (2) 1

https://doi.org/10.15407/polymerj.43.02.073

THERMOPLASTIC STARCH AS A COMPONENT OF FILM-FORMING COMPOSITIONS WITH DEGRADABLE PROPERTIES

T.V. Dmitrieva,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-3526-8395

S.K. Krymovska,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-9723-4633

G.E. Glieva,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0002-2916-0257

S.V. Riabov,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0003-2996-3794

Polym. J., 2021, 43, no. 2: 73-78.

 

Section: Review.

 

Language: Ukrainian.

 

Abstract:

A review of the literature on the production of thermoplastic starch, which is an integral part of biodegradable polymer compositions. The analysis of plasticizing additives, influence of their functional groups, chemical structure and technological parameters on physical and mechanical properties of starch compositions is carried out. The list of plasticizing additives studied should include: glycerin, water, polyethylene glycol, polypropylene glycol. Sorbitol, formamide, xylitol, dimethyl sulfoxide, gelatin, maleic anhydride, epoxidized compounds are defined as structure-forming additives. To improve the physical and mechanical properties of the starch, the addition of crosslinking agents such as citric, boric, or ascorbic acid has been proposed. According to the above review of studies, it can be stated that when creating thermoplastic starch, it is mandatory to use both plasticizing components and structure-forming, which allows the processing of thermoplastic starch by extrusion with subsequent granulation. Thermoplasticized starch due to various plasticizing additives and technological parameters of its production acquires a wide range of characteristics, which solves the problem of creating biodegradable film-forming materials. Depending on the goals, the second component of such materials may be synthetic polymers: polyethers, polycaprolactone, polyolefins, polyterephthalates, PVA and others. Technological parameters of processing in the extrusion process range from 115 °C to 190 °C in the extrusion process, which does not establish an optimized technology for thermoplastic starch and requires further research.

Key words: thermoplastic starch, plasticizing additives, film formation.

 

 

REFERENCES
1. Bulаch V.Yu., Sоvа N.V., Sаvchеnkо B.М., Pаhаrеnkо V.О. Теrmоplаstuchnuy krоhmаl. Оtrumаnnya, vlаstuvоstі, pеrеrоblеnnya. Hіmіchnа prоmuslоvіst. 2011. no. 3: 28–30.
2. Bulаch V.Yu. Rоzrоbkа tеhnоlоgіyi оdеrzhаnnya tа vlаstyivоstі tеrmоplаstuchnоgо krоhmаlyi. Аvtоrеfеrаt kаnd. dis. Кyiv. 2015: 24.
3. Zhulyakоvа Е.Т., Nоvikоvа M.Yu., Pоpоv N.N., Prydаchynа D.V., Bоndаrеv А.V. Тvеrdоfаznаya mеchаnоchimichеskаya оbrаbоtkа – pеrspеktivnuy mеtоd mоdifikаtsiyi krаchmаlоv dlya fаrmаtsеvtyichеskоyi prоmushlеnnоsti. Sоvrеmеnnyе prоblеmyi nаuki i оbrаzоvаniya. 2012: 2–6.
4. Lukin N.D., Ysаchov I.S. Теchnоlоgiya pоluchеniya tеrmоplаstichnyih krаchmаlоv. Vеstnik VGUIТ. 2015. no. 4: 156–159.
5. Lukin N.D., Аnаniеv V.V., Kоlpаkоvа V.V., Usаchеv I.S., Sаrdzhvеlаdzе А.S., Sdоbnikоvа О.А., Sоlоmin D.А., Lukin D.N. Biоlоgichеski rаzrushаеmаya tеrmоplаstichnаya kоmpоzitsiya. Pаtеnt RU 2645677. Оpubl. 27.02.2018. Bul. no. 6.
6. Bulаh V.Yu., Zhеrnоvа G.V., Budаsh Yu.О., Sоvа N.V., Pаchаrеnkо V.О. Dоslіdzhеnnya mоrfоlоgіyi kоmpоzutsіyi nа оsnоvі tеrmоplаstychnоgо krоhmаlyu. Vіsnuk КNUТD. 2014, no. 6: 81–87.
7. Bulаh V.Yu., Sоvа N.V., Sаvchеnkо B.М. Теrmоplаstichnyi krоhmаl. Оsоblyivоstі pоvtоrnоyi pеrеrоbky. Hіmіchnа prоmyslоvіst Ukrаinyi. 2016, no. 5–6: 56–58. https://doi.org/10.1111/trf.13444.
8. Pаtеnt RU 2606990. Biоrаzlаgаеmое vеschеstvо nа оsnоvе vоzоbnоvlyaеmоgо syiriya. Opubl. 2016. Bul. no. 20.
9. Kolpakova V.V., Ysachev I.S., Sardzhveladze A.S., Solomin D.A., Ananiev V.V., Vasiliev I.Yu. Soverschenstvovanie technologiyi primeneniya termoplastychnogo krohmala dlya biorazlagaiemoi polimernoi plenki. Pischevaya promyischlenost. 2017, no. 8: 34–38.
10. Ryabikina K.K., Galimzyanova R.Yu. Analiz smesei na osnove termoplastichnogo krohmala i polimolochnoi kisloty. Zhurnal ”Аlleya Nauki”. 2019, no. 6 (33). Alley – science.ru.
11. Yong Yang, Zhaobin Tang, Zhu Xiong, Jin Zhu. Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid). International Journal of Biological macromolecules. 2015, no. 17: 273–279. https://doi.org/10.1016/j.ijbiomac.2015.03.053.
12. Mantenk Leon, Lanio Didie, Zhymenes Zherom. Spospb polucheniya termoplastycheskih compozitsiyi na osnove plastyfitsurovanogo krohmala . Patent RU 2524382. Оpubl. 2014. Bul. no. 21.
13. Mathew A.P., Dufresne A. Plasticized waxy maize starch: Effect of Polyols and Relative Humidity on material Properties. Biomacromolecules. 2002, no. 3: 1101–1108. https://doi.org/10.1021/bm020065p.
14. Zdanowicz M., Spychai T. Ionic liquids as starch plasticizers or solvents. Polimery. 2011, 56: 861–864. https://doi.org/10.14314/polimery.2011.861.
15. Poddenezhnyi E.N., Boyko A.A., Alekceenko A.A., Drobyishevskaya N.E., Yretskaya O.V. Progress v polucheniyi bioraslagaemyich kompozitsionnyih materialov na osnove krahmala. Vestnik GGTU im.P.O.Suhogo. 2015. no. 2: 31–41.
16. Ma X.F., Yu J.G. Hydrogen Bond of Thermoplastic starch and Effects on its Properties. Acta Chimica Sinica. 2004, 62, no. 12: 1180–1184.
17. Wilpiszewska K., Spychaj T. Chemiczna modyfikacja skrobi na drodze reaktywnego wytlaczania. Polimery. 2008, 53, no. 4: 268–275. https://doi.org/10.14314/polimery.2008.268.
18. Pavlenok A.V., Davyidova O.V., Drobyischevskaya N.E., Poddenezhnyi E.N., Boyko A.A., Shapovalov V.M. Polucheniye і svoistva bioraslagaemyich kompozitsionnyich materialov na osnove polivinilovogo spirta i krahmala . Vestnik GGTY im.P.О.Suhogo. 2018. no. 1: 38–46.
19. Papkina V.Yu. Poluchenie, svoistva i biodestruktsiya compositnych plenok na osnove krahmala, polivinilovogo spirta i L-аsparaginovoi kislotyi. Аvtoreferat. 2017: 12.
20. Wang N., Yu I., Ma X.F. Preparation and characterization of compatible thermoplastic dry starch / poly (lactid acid). Polymer Composites. 2008, no. 29: 551–559. https://doi.org/10.1002/pc.20399.
21. Guohua Z., Ya F., Cui L. Water resistance, mechanical properties and biodegradability of methylated cornstarch / poly (vinyl alcohol) blend film. Polym. Degrad. Stab. 2006, no. 4: 703–711. https://doi.org/10.1016/j.polymdegradstab.2005.06.008.
22. Dong G.I. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeter. Biodegr. 2004, no. 2: 69–91. https://doi.org/10.1016/S0964-8305(02)00177-4.
23. Sova N.V., Savchenko B.M., Plavan V.L., Biloshenko V.O. Sposobyi stvorennya ekologichno bezpechnoi polimernoi upakovkyi v Ukraini. Upakovka. 2017. no. 5: 31–34.
24. Mishurov D.O., Avramenko V.L., Popova G.O., Prudnikova T.I., Nedilko O.P. Doslidzhennya biodegradatsiyi polimernyih kompozyitsinyih materialiv na osnovi polietilenu nuzkoyi gustyinyi ta termoplastyichnogo krohmalyu. Voprosyi himiyi i himicheskoi tehnologiyi. 2012, no. 1: 69–72.
25. Kolpakova V.V., Usachev I.S., Sardzhveladze A.S., Lukin N.D., Ananiev V.V. Termoplastyichnyi krohmal v sostave biorazlagayimoyi polimernoyi plenki. Konditerskoe i hlebopekarnoe proizvodstvo. 2018. no. 1–2: 21–25.
26. Boudjema H.L., Bendaikha H. Composite materials derived from biodegradable starch polymer and Atriplex halimus fibers. e-Polymers. 2015, no. 5(6): 419–426. https://doi.org/10.1515/epoly-2015-0118.
27. Lu D.R., Xiao C.M., Xu S.J. Starch–based completely biodegradable polymer materials. express Polymer Letters. 2009, 3, no. 6: 366–375. https://doi.org/10.3144/expresspolymlett.2009.46.
28. Cuevas-Carballo Z.B., Duarte-Aranda S., Canche-Escamilla G. Properties and Biodegradability of Thermoplastic starch Obtained from Granular Starches Grafted with Polycaprolactone. International Journal of Polymer Science. 2017: 1–13. https://doi.org/10.1155/2017/3975692.
29. Nedilko O.P., Tyimchenko K.M., Mishurov D.O. Doslidzhennya biodegradatsiyi polimernyih kompozyitsinyih materialiv na osnovi termoplastyichnogo krohmalu. Polimernyi zhurnal. 2017, no. 2: 101–108. https://doi.org/10.15407/polymerj.39.02.101.