2021 (3) 7
https://doi.org/10.15407/polymerj.43.03.214
DEVELOPMENT AND RESEARCH OF POLYMER COMPOSITE MATERIAL WITH CEFAZOLIN BASED ON POLYURETHANE WITH ISOCYANURATE FRAGMENTS
I.I. Gladyr,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-6248-2709
R.A. Rozhnova,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: rozhnovarita@gmail.com
ORCID: 0000-0003-3284-3435
L.F. Narazhayko,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-9715-5986
L.Yu. Nechaeva,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-7031-9998
S.O. Primushko,
Institute of Macromolecular Chemistry of NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: nork345@gmail.com
ORCID: 0000-0002-3623-1068
Polym. J., 2021, 43, no. 3: 214-225.
Section: Medical polymers.
Language: Ukrainian.
Abstract:
Developed polymer composite material with Cefazolin based on polyurethane with isocyanurate fragments (PU), synthesized on the basis of polyoxypropylene glycol (POPG 1000), TDI (2,4;2,6-toluene diisocyanate) and 2,4,6-triisocyanate(trishexamethylene) isocyanate (ICC, Tolonate ™ HDT-LV, MM 1200) at a ratio of NCO: OH = 1: 1 in the medium N,N’-dimethylacetamide (DMAA) and Cefazolin (CFZ). CFZ is immobilized on isocyanurate-containing polyurethane by introducing a solution of CFZ with DMA into the reaction the amount of 5 wt. %. The synthesized polymeric material (PU-CFZ) represents a transparent film of yellow color with physical and mechanical characteristics: σ = 0,15 MPa; ε = 63.40%. According to IR spectroscopy, Cefazolin is immobilized on the polymer matrix by physically due to hydrogen interactions. The influence of biological medium 199 (BM 199) on the structure and properties of PU-CFZ during incubation for 1, 3 and 6 months was studied. It was found that after incubation in BM 199, the structure of PU-CFZ changes as a result of the interaction of enzyme molecules that are part of BM 199 with urethane and amide groups of PU. According to the results of physical and mechanical studies, after incubation in BM 199 for 6 months, PU-CFZ samples are characterized by tensile strength of 0.36 MPa and elongation at break of 98%, ie retain sufficient performance for use in biological objects for up to 6 months. Composite materials with Cefazolin are able to prolong the release of the drug for 28 days in an amount of about 30%, which is sufficient to provide a local therapeutic effect. According to the results of the cytotoxicity study of the developed material by in vitro tissue culture, it was found that the composite material based on isocyanurate-containing polyurethane with Cefazolin is biocompatible.
Key words: polyurethanes (PU), isocyanurates, Cefazolin (CFZ), biodegradation, biocompatibility.
REFERENCES
1. Karpenko O.S., Galatenko N.A., Rozhnova R.A. et al. Syntez novykh poliuretanemochevin medychnogo pryznachennia, napovnenykh dekametoksynom. Polymer Journal (Ukr), 2015, 37, no. 2: 200–204.
2. Rozhnova R.A., Karpenko O.S., Rudenchyk T.V., Galatenko N.A., Kiseleva T.O. Rozrobka plivkovy`x materialiv z dekametoksy`nom na osnovi poliuretansechovy`n, yaki mistyat` u svoyij strukturi fragmenty` kopolimeru N-vinilpirolidonu z vinilovy`m spy`rtom. Naukovi zapy`sky. NaUKMA, 2016, 10: 54–59.
3. Savelyev Yu., Veselov V., Markovskaya L., Savelyeva O., Akhranovich E., Galatenko N., Robota L., Travinskaya T. Preparation and characterization of new biologically active polyurethane foam. Materials Science and Engineering: C, 2014, 45: 127–135. https://doi.org/10.1016/j.msec.2014.08.068.
4. Gorbunova N.O., Rozhnova R.A., Galatenko N.A., Gry`cenko V.P. Doslidzhennya mozhly`vosti ximichnoyi immobilizaciyi proty`tuberkul`ozny`x zasobiv na poliuretan-epoksy`dnomu polimernomu nosiyi. Polymer Journal (Ukr), 2011, 32, no. 3: 288–294.
5. Vislohuzova T., Rozhnova R., Galatenko N., Narazhayko L., Rudenko A. Study of biodegradation, biocompatibility and bactericidal activity of film materials with tiamulin fumarate based on polyurethaneurea, Chem. Chem. Technol., 2020, 14, no. 3: 318–326. https://doi.org/10.23939/chcht14.03.318.
6. Rudenchyk T., Rozhnova R., Galatenko N. Hydrophylic Polyurethaneurea Containing the Copolymer of N-vinylpyrrolidone, Vinyl Acetate and Vinyl Alcohol for Possible Biomedical Use. Adv. Biochem., 2017, 5, no. 4: 73–78. https://doi.org/10.11648/j.ab.20170504.14.
7. Gite V.V., Mahulikar P.P., Hundiwale D.G., Kapadi U.R. Polyurethane coatings using trimer of isoporone diisocyanate. Journal of Scientific & Industrial Research, 2004, 63: 348–354.
8. Bakirova I.N., Zenitova L.A., Novoseltsev V.T. Sintez i svoystva poliuretanov pokryitiy s izotsianuratnyimi koltsami v tsepi. Himiya i kompyuternoe modelirovanie. Butlerovskie soobscheniya. 2002, no. 11: 41–44.
9. Lukashevich S. A., Rozhnova R. A., Galatenko N. A., Kozlova G. A. Development of method for synthesis of polyurethanes branched structure containing isocyanurate fragments in macrochain. Study their structure and properties. Odesa National University Herald. Chemistry. 2016, 21, no. 4(60): 48–56. https://doi.org/10.18524/2304-0947.2016.4(60).83667.
10. Lukashevich S.A. Rozhnova R.A., Kozlova G.A., Nechaeva L.Yu. Kompozytsiini materialy na osnovi izotsianuratvmisnoho poliuretanu z prolonhovanym vyvilnenniam doksorubitsynu. Polymer Journal (Ukr), 2019, 41, no. 4: 271–277. https://doi/org/10.15407/polymerj.41.04.271.
11. Lukashevich S. A., Kozlova G. A. Polyurethanes synthesized on the basis of di- and polyisocyanate filled with doxorubicin: a study of the structure and properties. Polymer Journal (Ukr), 2019, 41, no. 1: 58–61. https://doi.org/10.15407/polymerj.41.01.058.
12. Gladyr I.I., Kozlova G.A., Narazhayko L.F., Galatenko N.A. Development and research of polymeric composite materials of medical purpose with Ifosfamide on the basis of polyurethane with isocianurate fragments. Polymer Journal (Ukr), 2020, 42, no. 2: 125–135. https://doi.org/10.15407/polymerj.42.02.125.
13. Weis S., Kesselmeier M., Davis J.S. et al. Cefazolin versus anti-staphylococcal penicillins for the treatment of patients with Staphylococcus aureus bacteraemia. Clinical Microbiology and Infection, 2019, 25, no. 7: 818–827. https://doi.org/10.1016/j.cmi.2019.03.010.
14. Jane M. GouldGail, L. Rodgers. Infection following Burns, Part II. In book: Principles and Practice of Pediatric Infectious Diseases (Fourth Edition), Ed.: S. Long, L. Pickering, Ch. Prober, Imprint: Saunders, 2012. ISBN: 9780323247658.
15. Po-Liang Lai, Ding-Wei Hong, Kuan-Lin Ku et. al. Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 2014, 10, no. 3: 553–560. https://doi.org/10.1016/j.nano.2013.09.005.
16. Yousef Fazli, Zahra Shariatinia Mats. Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous. Materials Science and Engeneering:C, 2017, 71, no. 1: 641–652. https://doi.org/10.1016/j.msec.2016.10.048.
17. Grigorieva M.V., Gladir I.I.,, Galatenko N.A. Cephasoline filled polyurethane carriersї. Ukrainskij khimichnyj zhurnal (Ukr), 2002, 68, no. 4: 125–127.
18. Burenko G.V., Galatenko N.A., Kabak K.S. Morfologicheskie i biohimicheskie aspektyi biodestruktsii polimerov. Kiev: Nauk. dumka, 1986:152.
19. Rudenchyk, T.V., Rozhnova, R.A., Galatenko, N.A., Nechaeva, L.Y. The effects of the model biological medium on the structure and properties of composite materials with levamisole and the dynamics of the release of a drug substance. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, 5: 140–148. ISSN 0321-4095.
20. Lebediev Ye., Konstantinov Yu., Galatenko N. et al.: Toksykoloho-Hihiienichni ta Doklinichni Doslidzhennia Polymernykh Materialiv i Vyrobiv na ikh Osnovi Medychnoho Pryznachennia. Naukova dumka, Kyiv 2009.
21.Yatsenko V.P., Galatenko N.A., Pchakadze G.A. The method of quantitative study of fibroblastic cells growth in tissue culture. Cytology and Genetics. 1984. 4: 280. [in Ukrainian].
22. Mashkovsky`j M.D. Lekarstvennie sredstva, M.:OOO Y`zdatel`stvo Novaya Volna, 15-e y`zd,. 2005:1200.
23. Bellami L. Infrakrasnyie spektryi molekul. Moskva: Izdatelstvo inostrannoy literatury, 1957: 444.
24. Slivkin A.I., Sadchikova N.P. Funktsionalnyiy analiz organicheskih lekarstvennyih veschestv. Pod red. akademіka RAMN, prof. A.P. Arzamastseva. Voronezh: Voronezhskiy gosudarstvennyiy universitet, 2007: 426. ISBN 978-5-9273-1104-0.