2021 (4) 2

https://doi.org/10.15407/polymerj.43.04.251

RHEOKINETIC AND MORPHOLOGICAL FEATURES OF THE REACTION FORMATION OF A POLYMER COMPOSITE MATERIAL BASED ON IMPACT-RESISTANT POLY(METHYL METHACRYLATE). MODEL AND APPLIED ASPECTS

V.F. Shumsky,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: vfshumskiy26@gmail.com

ORCID: 0000-0003-4458-7256

I.P. Getmanchuk,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

ORCID: 0000-0002-6924-1430

L.F. Kosyanchuk,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: lkosyanchuk@ukr.net

ORCID: 0000-0002-3617-9538

T.D. Ignatova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: taya.ihnatova@gmail.com

ORCID: 0000-0001-8189-5683

Polym. J., 2021, 43, no. 4: 251-267.

 

Section: Review.

 

Language: English.

 

Abstract:

Based on the experimental data on the rheology of dispersions of hydrophobic aerosil (Am) in a low molecular weight hydrocarbon medium, the possibility of using a «micellar» mechanism for the formation of a bulk structure for such dispersions is considered. A model of such a structure before, during and after shear deformation is proposed, which makes it possible to interpret experimental data on the rheology of dispersed systems. The results of the study of rheokinetics are presented in a new visio – from the point of view of self-organization under the influence of the shear field. The PMMA–PU–Am system was considered as a polymer composite (PC), in which the matrix is the poly(methyl methacrylate) (PMMA) being modified, and the dispersed phase is a mixture of polyurethane (PU) with Am. It has been shown that during the reaction formation of this  composition, the conditions of shear deformation of the system correspond to those at which self-organization and fixation of the coagulation rheopex structure of the nanofiller in PC is possible at the moment of reaching very high viscosity values (gel-point), when diffusion processes will be practically frozen. Two concentration regions of Am were predicted (before and after the percolation threshold), where an enhancement of the mechanical characteristics of PMMA can be expected. The relationship between the rheokinetics of the formation of a linear PMMA–crosslinked PU mixture in the presence of different amounts of oligomeric azo-initiator containing fragments of the polyurethane chain and groups capable of initiating radical polymerization of methyl methacrylate and the process of phase separation, morphology and mechanical properties of the final products has been established. It was shown that the time of phase separation and gelation are interrelated and there is in a simple dependence on the concentration of the azo-initiator. Such an initiator affects the structural-rheological transitions in the system and leads to the formation of morphology with smaller domains. The most stable system with the best dispersion of polyurethane in polymethyl methacrylate is a mixture containing 0.002 mol/L of azo-initiator, which has improved mechanical properties and increased impact viscosity.

Key words: rheokinetics, viscosity, structure formation,  shear deformation, rheopexy, gelation.

 

REFERENCES

1. Kulichihin V.G., Semakov A.V., Karbushev V.V., Plate N.A., Picken S.J. Perehod haos – poryadok v kriticheskih rezhimah techeniya sdviga rasplavov polimerov i nanokompozitov. Vyisokomolek. soed., 2009, 51, no. 11: 2044–2053. https://doi.org/10.1134/S0965545X09110169
2. Karbushev V.V., Semakov A.V., Kulichihin V.G. Struktura i mehanicheskie svoystva termoplastov, modifitsirovannyih nanoalmazami. Vyisokomolek. soed., Ser. A, 2011, 53, no. 9, 1513–1523. https://doi.org/10.1134/S0965545X11090057
3. Malkin A.Ya., Kulichihin S.G. Fazovyie perehodyi v polimernyih sistemah, vyizvannyih deystviem mehanicheskih poley. Vyisokomolek. soed., Ser. B, 1996, 38, no. 2: 362–374.
4. Yanase H., Moldenaers P., Mewis J., Abetz V., van Egmont J., Fuller G. G. Structure and dynamics of a polymer solution subject to flow-induced phase separation. Rheol. Acta, 1991, 30: 89–97. https://doi.org/10.1007/BF00366798
5. Vincker I., Moldenaers P., Mewis J. Relationship between rheology and morphology of model blends in steady shear flow. J. Rheol, 1996, 40: 613–631. https://doi.org/10.1122/1.550800
6. Vincker I., Moldenaers P., Mewis J. Transient rheological response and morphology evolution of immiscible polymer blends. J. Rheol, 1997, 41: 705–718. https://doi.org/10.1122/1.550870
7. Shumsky V.F., Getmanchuk I., Ignatova T., Maslak Yu., Cassagnau P., Boiteux G., Melis F. Effect of nanofillers on the phase separation and rheological properties of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Rheol. Acta, 2010, 49, no. 8: 827–836. https://doi.org/10.1007/s00397-010-0447-8
8. Malkin A.Ya., Semakov A.V., Kulichihin V.G. Strukturoobrazovanie pri techeneii polimernyih i kolloidnyih sistem. Vyisokomolek. soed., 2010, 52, no. 11: 1879–1902. https://doi.org/10.1134/S0965545X10110039
9. Shumskiy V.F., Kosyanchuk L.F., Getmanchuk I.P., Babich O.F., Antonenko O.I. Reologiya i morfologiya formiruyuschihsya in situ smesey lineynyih poliuretana i polimetilmetakrilata. Vyisokomolek. soed., Ser. A, 2011, 53, no. 10: 1776–1784. https://doi.org/10.1134/S0965545X11090112
10. Shumskiy V.F., Kosyanchuk L.F., Todosiychuk T.T., Getmanchuk I.P. Vliyanie nanonapolnitelya na reokinetiku formiruyuscheysya smesi polimetilmetakrilat – poliuretan, Dop. NAN Ukrainy, 2011, no. 2: 137–143.
11. Shumskiy V.F., Kosyanchuk L.F., Babich O.V., Grischenko V.K., Busko N.A., Getmanchuk I.P., Antonenko O.I., Todosiychuk T.T. Vliyanie oligomernogo azoinitsiatora na formirovanie in situ smesi polimetilmetakrilat – poliuretan. Reokinetika i morfologiya. Dop. NAN Ukrainy, 2012, no. 6: 122–128.
12. Shumskiy V.F., Kosyanchuk L.F., Ignatova T.D., Gomza Yu.P., Getmanchuk I.P., Antonenko O.I., Babich O.V., Nesin S.D., Maslak Yu.V. Reokinetika formirovaniya in situ napolnennyih aerosilom smesey polimetilmetakrilat – poliuretan. Pol. zhurnal, 2014, 36, no. 1: 57–65.
13. Shumskiy V.F., Kosyanchuk L.F., Ignatova T.D., Getmanchuk I.P., Grischenko V.K., Busko N.A., Antonenko O.I., Babich O.V. Reokinetika formirovaniya in situ smesi polimetilmetakrilat – poliuretan v prisutstvii oligomernogo initsiatora polimerizatsii, morfologiya i mehanicheskie svoystva konechnyih produktov reaktsii. Vyisokomolek. soed., Ser. B, 2015, 57, no. 5: 346–355. https://doi.org/10.1134/S1560090415050152
14. Shumskiy V.F., Ignatova T.D., Kosyanchuk L.F., Getmanchuk I.P., Antonenko O.I., Babich O.V. Vliyanie molekulyarnoy massyi oligoefirnogo bloka poliuretana i sootnosheniya komponentov na reokineticheskie harakteristiki i mehanicheskie svoystva smesi polimetilmetakrilat – poliuretan. Pol. zhurnal, 2017, 39, no. 1: 24–31.
15. Shumskyi V.P., Kosianchuk L.F., Ihnatova T.D., Hetmanchuk I.P., Antonenko O.I., Brovko O.O. Vplyv pryrody poverkhni nanonapovniuvacha na utvorennia in situ ta morfolohiiu sumishi polimetylmetakrylat – poliuretan. Pol. zhurnal, 2019, 41, no. 1: 19–25.
16. Shumskiy V.F., Ignatova T.D., Kosyanchuk L.F., Getmanchuk I.P., Antonenko O.I., Brovko A.A. Skeylingovyiy podhod k opisaniyu reokinetiki obrazovaniya polimetilmetakrilata, sshitogo poliuretana i ih smesi, formiruyuscheysya in situ. Plast. massyi, 2019, no. 3–4: 11–13. https://doi.org/10.35164/0554-2901-2019-3-4-11-13
17. Malkin A.Ya. Osnovyi reologii, SPb: Professiya, 2018.
18. Shumskiy V.F., Kosyanchuk L.F., Davidenko V.V., Getmanchuk I.P., Antonenko O.I., Syirovets A.P. Reologicheskaya harakteristika dispersii gidrofobizovannogo aerosila v uglevodorodnoy srede. Reopeksiya i porog perkolyatsii. Pol. zhurnal, 2018, 40, no. 1: 23–30. https://doi.org/10.15407/polymerj.40.01.023
19. Malkin А.Ya., Isaev А.I. Rhelogy: concept, methods, applications (Rus.), St. Petersburg: Professiya, 2010, 557.
20. Khan S.A., Zoeller N.J. Dynamic rheological behavior of fumed silica suspensions. J. Rheol., 1993, 37, no. 6: 1225–1235. https://doi.org/10.1122/1.550378
21. Raghavan S.R., Khan S.A. Shear-induced microstructural changes in flocculated suspensions of fumed silica. J. Rheol., 1995, 39, no. 6: 1311–1325. https://doi.org/10.1122/1.550638
22. Berret J.-F., Porte G., Decruppe J.-P. Inhomogeneous shear flows of wormlike micelles:mA master dynamic phase diagram. Phys. Rev. E, 1997, 55, no. 2: 1668–1676. https://doi.org/10.1103/PhysRevE.55.1668
23. Cappelaere E., Berret J.-F., Decruppe J.-P., Cressely R., Lindner P. Rheology, birefringence, fnd small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys. Rev. E, 1997, 56, no. 2: 1869–1878. https://doi.org/10.1103/PhysRevE.56.1869
24. Rusanov A.I. Mitselloobrazovanie v rastvorah poverhnostno-aktivnyih veschestv, SPb: Himiya, 1992.
25. Morelend D.E. Dioksid kremniya, Napolniteli dlya polimernyih kompozitsionnyih materialov: Spravochnoe posobie, per. s angl., Pod red. P.G. Babaevskogo, M., Himiya, 1981, 736 p.
26. Miyahara M., Kawasaki H., Garamus V.M., Nemoto N., Kakehashi R., Tanaka S., Annaka M., Maeda H. Oleyldimethylamine Oxide in water. Colloids Surf. B, 2004, 38, no. 3–4: 131–138. https://doi.org/10.1016/j.colsurfb.2004.04.011
27. Masalova I., Taylor M., Kharatiyan E., Malkin A. Ya. Rheopexy in highly concentrated emulsions. J. Rheol., 2005, 49, no. 4: 839–849. https://doi.org/10.1122/1.1940641
28. Melnikov A.B., Antonov E.A., Hrustalev A.Z., Zorin I.M., Bilibin A.Yu. Fiksatsiya strukturyi mitsell putem polimerizatsii monomerov: gidrodinamicheskie svoystva polimerizovannyih mitsell. Kolloid. zh., 2010, 72, no. 4: 507–511.
29. Malkin A.Ya., Kulichihin S.G. Reologiya v protsessah obrazovaniya i prevrascheniya polimerov, M.: Himiya, 1985.
30. Klyikova V.D., Chalyih A.E., Vershinin L.V., Kuleznev V.N.,Avdeev N.N., Matveev V.V., Yanovskiy Yu.G. Fazovoe ravnovesie, struktura i svoystva smesi polistirol, butadien-stirolnyiy sopolimer v oblasti rasslaivaniya. Vyisokomolek. soedineniya, Ser. A., 1985, 27, no. 3: 724–731.
31. Kim H., Char K. Rheological behavior during the phase separation of thermoset epoxy/thermoplastic blends. Korea-Australia Rheol. J, 2000, 12, no. 1: 77–81.
32. Kosyanchuk L.F., Ignatova T.D., Grischenko V.K., Bus’ko N.A., Antonenko O.I., Babich O.V., Sil’chenko Yu.A., Maslak Yu.V., Shumskii V.V. Features of the in situ formation of a linear poly(methyl methacrylate)–crosslinked polyurethane blend in the presence of an oligomeric initiator. Polym. Sci., 2014, 56, no. 2: 173–183. https://doi.org/10.1134/S0965545X14020072
33. Graebling D., Muller R., Palierne J.F. Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules, 1993, 26, no. 2: 320–329. https://doi.org/10.1021/ma00054a011
34. Kuleznev V.N. Smesi polimerov (struktura i svoystva), M.: Himiya, 1980.
35. Winter H.H. Can the gel point of a cross-linking polymer be detected by the G’, G” crossover?, Polym. Eng. Sci., 1987, 27, no. 22: 1698–1702. https://doi.org/10.1002/pen.760272209
36. Richter E.B., Macosko C.W. Viscosity changes during isothermal and adiabatic network polymerization. Polym. Eng. Sci., 1980, 20, no. 7: 921–927. https://doi.org/10.1002/pen.760201402
37. Kuleznev V.N., Shershnev V.A. Himiya i fizika polimerov, Spb, Lan, 2014, 368 p.
38. Rozenberg B.A. Microphase separation in curing multicomponent polymer/oligomer systems. Russian Chem. J., 2001, 45, no. 5-6: 23–31 (in Rus.)
39. Jyotishkumar P., Özdilek C., Moldenaers P., Sinturel C., Janke A., Pionteck J., Thomas S. Dynamics of phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/DDS system: kinetics and viscoelastic effects. J. Phys. Chem. B, 2010, 114, no. 42: 13271–13281. https://doi.org/10.1021/jp101661t
40. Nesterov A.E., Lipatov Yu.S., Horichko V.V. Comparison of the phase behaviour of the liquid-crestalline polymer/poly(methy methacrylate) and poly(vinyl acetate/ poly(methy methacrylate) blends. Polym. Intern., 1999, 48, no. 2: 117–123. https://doi.org/10.1002/(SICI)1097-0126(199902)48:2<117::AID-PI116>3.0.CO;2-C
41. Okada M., Sakaguchi T. Thermal-history dependence of phase separation indused by radical polymerization of 2-chlorostyrene in presence of polystyrene. Macromolecules, 2001, 34, no. 12: 4027–4032. https://doi.org/10.1021/ma002054z
42. Mekalina I.V., Sentyurin E.G., Trigub T.S., Ayzatulina M.K.. Aviatsionnyye organicheskiye stekla dlya samoletov i vertoletov, ekspluatiruyushchikhsya v morskikh usloviyakh. Plast. massyi, 2013, no. 3: 63–64.