2022 (1) 1
https://doi.org/10.15407/polymerj.44.01.003
NANOCOMPOSITES BASED ON SINGLECOMPONENT AND MULTICOMPONENT POLYMER MATRICES FOR BIOMEDICAL APPLICATIONS
O.M. Bondaruk,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: bondarukoksanam@i.ua
ORCID: 0000-0003-0481-2121
L.V. Karabanova,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: lyudmyla_karaban@ukr.net
ORCID: 0000-0002-5909-0042
Polym. J., 2022, 44, no. 1: 3-23.
Section: Review.
Language: Ukrainian.
Abstract:
The review is devoted to analysis of the publications in the area of polymers of biomedical applications. Different types of the polymer matrices for drug delivery are analyzed, including polyurethanes, hydroxyacrylates, and multicomponent polymer matrices, which created by method of interpenetrating polymer networks. Particular attention is paid to description of synthesized and investigated nanocomposites based on polyurethane / poly (2-hydroxyethyl methacrylate) polymer matrix and nanooxides modified by biologically active compounds.
Keywords: polyurethanes, hydroxyacrylates, nanocomposites, IPN’s, nanofillers, biologically active compounds, biomedical applications.
References
1. Karpenko O.S., Demchenko I.B. Biolohichno aktyvni polimerni systemy z likarskymy rechovynamy. Polimernyi zhurnal. 2013. 35, no. 4: 333–342.
2. Yong Kiel Sung, Sung Wan Kim. Recent advances in polymeric drug delivery systems. Biomaterials Research. 2020. 24:12. https://doi.org/10.1186/s40824-020-00190-7.
3. Polyurethane Polymers. Blends and Interpenetrating polymer networks / Editor Sabu Thomas, Janusz Datta, Jozef T. Haponiuk, Arunima Reghunadhan. Amsterdam: Elsevier. 2017. 412.
4. Joseph J., Patel R.M., Wenham A., Smith J.R. Biomedical applications of polyurethane materials and coatings. The international journal of surface engineering and coatings 2018. 96, no. 3: 121–129. https://doi.org/10.1080/00202967.2018.1450209.
5. Dzhenkins M.Dzh. Polymery v biolohii i medytsyni.Moskva:Naukovyi svit, 2011: 247.
6. Avramenko V.L., Pidhorna L.P., Cherkashyna H.M., Blyzniuk O.V. Tekhnolohiia vyrobnytstva ta pererobky polimeriv medyko-biolohichnoho pryznachennia. Kharkiv: Tekhnolohichnyi tsentr, 2018: 356.
7. Magdalena Aflori Smart Nanomaterials for biomedical applications – a review /Editor Rosalia Bertorelli. Nanomaterials. 2021. 11, no. 2: 396. https://doi.org/10.3390/nano11020396.
8. Gunatillake P.A., Adhicari R. Biodegradable synthetic polymers for tissue engineering. European Cells and Materials. 2003. 5: 1–16. https://doi.org/10.22203/eCM.v005a01.
9. Lendlein A. Polymers in biomedicine. Macromolecular Bioscience. 2010. 10: 993–997. https://doi.org/10.1002/mabi.201000300.
10. Maitz M.F. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology. 2015. 1: 161–176. https://doi.org/10.1016/j.bsbt.2015.08.002.
11. Kucinska-Lipka J., Gubanska I., Janikb H. Polyurethanes modified with natural polymers for medical application. Part 2. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose. Polimery.Polimery. 2014. 59, no. 3: 195–276. https://doi.org/10.14314/polimery.2014.197.
12. Antonio D’Amore, Tomo Yoshizumi, Samuel K. Luketich, Matthew T. Wolf, Xinzhu Gu, Marcello Cammarata, Richard Hoff, Stephen F. Badylak, William R. Wagner. Bi-layered polyurethane – Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. 2016. Biomaterials. 107: 1–14. https://doi.org/10.1016/j.biomaterials.2016.07.039.
13. Keane T.J., Badylak S.F. Biomaterials for tissue engineering applications. Seminars in Pediatric Surgery. 2014. 23,
no. 3: 112–118. https://doi.org/10.1053/j.sempedsurg.2014.06.010.
14. Marshiana D., Vinothkumar C., Numa Greta D. Synthesis of copolymer hydrogel P(HEMA-MMA). Journal of chemical and pharmaceutical research. 2015. 7, no. 2: 381–385.
15. Chen Q., Liang S., Thouas G. A. Elastomeric biomaterials for tissue engineering. Progress in Polymer Science. 2013. 38: 584–671. https://doi.org/10.1016/j.progpolymsci.2012.05.003.
16. Natural and synthetic biomedical polymers/edited by S. Kumbar, C. Laurencin, M. Deng. San Diego: Elsevier Science. First edition. 2014: 420.
17. Joanne E. McBane, Soroor Sharifpoor, Kuihua Cai, Rosalind S. Labow, J. Paul Santerre Biodegradation and in vivo biocompatibility of a degradable, polar/ hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials. 2011. 32, no. 26: 6034–6044. https://doi.org/10.1016/j.biomaterials.2011.04.048.
18. Anuradha Subramaniam, Swaminathan Sethuraman. Biomedical Applications of Nondegradable Polymers. Natural and Synthetic Biomedical Polymers. 2014. Сh.18: 301–308. https://doi.org/10.1016/B978-0-12-396983-5.00019-3.
19. Wenshou Wang, Chun Wang. Polyurethane for biomedical applications: A review of recent developments. In the design and manufacture of medical devices. New York: Elsevier Ltd. 2012: 115–151. https://doi.org/10.1533/9781908818188.115.
20. Rahimi A., Mashak A. Review on rubbers in medicine: natural, silicone and polyurethane rubbers Plastics, Rubber and Composites. Macromolecular Engineering. 2013. 42: 223–230. https://doi.org/10.1179/1743289811Y.0000000063.
21. Puoci F. Advanced polymers in medicine. Bucher: Springer Link, 2014: 537. https://doi.org/10.1007/978-3-319-12478-0.
22. Munoz-Bonilla A., Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Progress in Polymer Science. 2012. 37: 281–339. https://doi.org/10.1016/j.progpolymsci.2011.08.005.
23. Hook A.L., Chang C.-Y., Yang J., Luckett J., Cockayne A., Atkinson S., Mei Y., Bayston R., Irvine D.J., Langer R., Anderson D.G., Williams P., Davies M.C., Alexander M.R. Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology. 2012. 30: 868–875. https://doi.org/10.1038/nbt.2316.
24. Mayet N., Choonara Y.E., Kumar P., Tomar L.K., Tyagi C., Du Toit L.C., Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci. 2014. 103: 2211–2230. https://doi.org/10.1002/jps.24068.
25. Ruso J.M., Messina P.V., Taylor C.R.C., Group F. Biopolymers for medical applications. New York: CRC Press, 2017: 300. https://doi.org/10.1201/9781315368863.
26. Kaali P. Antimicrobial polymer composites for medical applications: doctor’s thesis. Sweden, 2011: 79.
27. Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2016. 2, no. 4: 454–472. https://doi.org/10.1021/acsbiomaterials.5b00429.
28. Rahmani B., Tzamtzis S., Ghanbari H., Burriesci G., Seifalian A.M. Manufacturing and hydrodynamic assessment of an ovel aortic valve made of a new nanocomposite polymer. J.Biomech. 2012, 45: 1205–1211. https://doi.org/10.1016/j.jbiomech.2012.01.046.
29. Arslantunali D., Dursun T., Yucel D., Hasirci N., Hasirci V. Peripheral nerve conduits: technology update. Med.Devices(Auckland). 2014. 7: 405–424. https://doi.org/10.2147/MDER.S59124.
30. Zhao X., Courtney J.M., Qian H. Bioactive materals in medicine 1st edition Design and Applications. New York: Woodhead Publishing, 2011: 288. https://doi.org/10.1533/9780857092939.
31. Ahmed El-Banna, Dalia Sherief, Amr S. Fawzy. Resin-based dental composites for tooth filling. Advanced Dental Biomaterials. 2019. 7: 127‒173. https://doi.org/10.1016/B978-0-08-102476-8.00007-4.
32. Hryhorieva M.V. Polimerni systemy z kontrolovanym vyvilnenniam biolohichno-aktyvnykh rechovyn. Biotekhnolohiia. 2011. 4, no. 2: 9–23.
33. Sevastianov V.Y. Biomaterialy, systemy dostavky likarskykh rechovyn ta bioinzheneriia. Visnyk transplantolohii ta shtuchnykh orhaniv. 2009. 11, no. 3: 69–80.
34. Mebert A.M., Villanueva M.E., Catalano P.N., Copello G.J., Bellino M.G., Alvarez G.S., Desimone M.F. Surface Chemistry of Nanobiomaterials Applications. /Editor Alexandru Grumezescu. Applications of Nanobiomaterials. 2016. 3, Ch.5: 135–162. https://doi.org/10.1016/B978-0-323-42861-3.00005-4.
35. Karabanova L.V., Herashchenko I.I., Voronin Ye.P., Nosach L.V, Bondaruk. O.M. Nanokompozytnyi material dlia biomedychnoho zastosuvannia: patent na korysnu model 97613U Ukraine, МПК C08K 5/16, C08L 33/12, C08K 3/36 / no. u 2014 10703; zaiavl. 30.09.2014; opubl. 25.03.2015, Biul. no. 6.
36. Macocinschi D., Filip D., Vlad S. Natural-based polyurethane biomaterials for medical applications. Rosario Pignatello (Ed.). 458 р. 2011. 3, 16: 309–332. https://doi.org/10.5772/24219.
37. Trzaskowski M., Butruk B., Ciach T. Hydrogel coatings for artificial heart implants. Biomedical Engineering. n.d: 19–22.
38. Pascual A. Pathogenesis of catheter-related infections: lessons for new designs.Clin. Microbiol. Infect. 2002. 8: 256–264. https://doi.org/10.1046/j.1469-0691.2002.00418.x.
39. Alves P., Ferreira P., Gil M.H. Polyurethane: Properties, Structure and Applications. Chapter 1. Biomedical polyurethanes-based materials. New York: Nova Publishers, 2012: 1–26.
40. Stuart Cooper, Bamford C.H., Tsuruta T. Polymer biomaterials in Solution, as Interfaces and as Solids: a festschrift honoring the 60th birthday of Dr. Allan S. Hoffman. New York: Taylor & Francis Group, CRC Press, 2014: 1134. https://doi.org/10.1201/b12021.
41. Tanaka H., Kunimura M. Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polym. Eng. Sci. 2002. 42: 1333–1349. https://doi.org/10.1002/pen.11035.
42. Oh S.Y., Kang M.S., Knowles J.C., Gong M.S. Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. Journal of Biomaterials Applications. 2015. 30, no. 3: 327–370. https://doi.org/10.1177/0885328215590054.
43. Gunatillake P.A., Adhicari R. Biodegradable synthetic polymers for tissue engineering. European Cells and Materials. 2003. 5: 1–16. https://doi.org/10.22203/eCM.v005a01.
44. Hryhoreva M.V. Poliuretanovi kompozyty yak nosii likiv: kharakterystyky vyvilnennia. Biotechnologia Acta. 2013. 6, no. 5: 41–48.
45. Ali Rashti, Hossein Yahyaei, Saman Firoozi, Sara Ramezani, Ali Rahiminejad, Roya Karimi, Khadijeh Farzaneh, Mohsen Mohseni, Hossein Ghanbari. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Materials Science and Engineering: C. 2016. 69: 1248–1255. https://doi.org/10.1016/j.msec.2016.08.037.
46. Yoon S.S., Kim J.H., Kim S.C. Synthesis of biodegradable PU/PEGDA IPNs having micro-separated morphology for enhanced blood compatibility polymer. Bulletin. 2005. 53, no. 5–6: 339–340. https://doi.org/10.1007/s00289-005-0355-8.
47. Lu S., Anseth K.S. Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. Journal of Controlled Release. 1999. 57: 291–300. https://doi.org/10.1016/S0168-3659(98)00125-4.
48. Nguyen K., West J. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002. 23: 4307–4314. https://doi.org/10.1016/S0142-9612(02)00175-8.
49. Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009. 15: 1123–1133. https://doi.org/10.1002/chem.200801523.
50. Peppas N., Bures P. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000. 50: 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4.
51. Honey Priya James, Rijo John, Anju Alex, Anoop K.R. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B. 2014. 4, no. 2: 120–127. https://doi.org/10.1016/j.apsb.2014.02.005.
52. Seidel J.M., Malmonge S.M. Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Material research. 2000. 3, no. 3: 79–83. https://doi.org/10.1590/S1516-14392000000300006.
53. Turov V.V., Gerashenko I.I., Karabanova L.V., Kukolevska O.S., Krupska T.V. The features of absorption of aqueous-organic mixtures by polyurethane-poly(2-hydroxyethyl methacrylate) matrix by the data of NMR spectroscopy. Polymer Science. 2017. Series A. 59, no. 4: 524–532. https://doi.org/10.1134/S0965545X17040125.
54. Tavakoli J., Tang Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers. 2017. 9: 364–389. https://doi.org/10.3390/polym9080364.
55. Calo E., Khutoryanskiy V.V. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal. 2015. 65: 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024.
56. Hoffman A.S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 2002. 43: 3–12. https://doi.org/10.1016/S0169-409X(01)00239-3.
57. Li Z., Guan J. Hydrogels for cardiac tissue engineering. Polymers. 2011. 3: 740–761. https://doi.org/10.3390/polym3020740.
58. Biondi M., Borzacchiello A., Mayol L., Ambrosio L. Nanoparticles-integrated hydrogels as multifunctional composite materials for biomedical applications. Gels. 2015. 1: 162–178. https://doi.org/10.3390/gels1020162.
59. Batich C., Leamy P. Biopolymers / M. Kutz (Ed.). Standart handbook of biomedical engineering and design. New York: Mc Graw-Hill companies, 2009. Vol. 1. Ed. 2. Part 3. Ch. 13: 1600.
60. Singh G., Lohani A., Bhattacharya S.S. Hydrogel as a novel drug delivery system: a review. Journal of fundamental pharmaceutical research. 2014. 2, no. 1: 35–48. https://doi.org/10.1155/2014/583612.
61. Seal B.L., Otero T.C., Panitch A. Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering. 2001. 34: 147–230. https://doi.org/10.1016/S0927-796X(01)00035-3.
62. Malmonge S.M., Arruda A.C. Artificial articular cartilage: mechanoelectrical transduction under dynamic compressive loading. Artificial Organs. 2000. 24. no. 3: 174–180. https://doi.org/10.1046/j.1525-1594.2000.06538.x.
63. Cretan M., Grigoras S., Hanganu L., Munteanu F. HEMA based copolymers as future materials in intervertebral disc replacements. Materiale plastice. 2008. 45, no. 1: 109–112.
64. Gaharwar A.K., Peppas N.A., Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering. 2014. 111, no. 3: 441–453. https://doi.org/10.1002/bit.25160.
65. Palza H. Antimicrobial polymers with metal nanoparticles. International Journal of Molecular Sciences. 2015. 16: 2099–2116. https://doi.org/10.3390/ijms16012099.
66. Mehdi Erfani Jazi, Thualfeqar Al-Mohanna, Fatemeh Aghabozorgi. Synthesis and applications of isocyanate free polyurethane materials. Global journal of science frontier research: Chemistry. 2016. 16, no. 3. Version 1.0. Type: Double Blind Peer Reviewed International Research Journal. ISSN: 2249-4626 & Print ISSN: 0975-5896.
67. Babu C.A., Prabhakar M.N., Babu S.A., Mallikarjuna B., Subha M.C.S., Rao C.K. Development and characterization of semi-IPN silver nanocomposites hydrogels for antibacterial applications. International Journal of Carbohydrate Chemistry. 2013. Р. 243695:1–8. https://doi.org/10.1155/2013/243695.
68. Rodkate N. Wichai U., Boontha B., Rutnakornpituk M. Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydrate Polymer. 2010. 81: 617–625. https://doi.org/10.1016/j.carbpol.2010.03.023.
69. Lynda M.D., Sivasankar B. Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. European Polymer Journal. 2009. 45: 165–170. https://doi.org/10.1016/j.eurpolymj.2008.10.012.
70. US 20120045651 A1. Myung D., Jaasma Michael J., Kourtis L., Chang D., Frank Curtis W. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same. 2012.
71. Rani M., Agarwal A., Maharana T., Negi T.S. A comparative study for interpenetrating polymeric network (IPN) of chitosan-amino acid beads for controlled drug release. African Journal of Pharmacy and Pharmacology. 2010. 4: 35–54.
72. US 20140120177. Ward R., McCrea K. Hydrophilic interpenetrating polymer networks derived from hydrophobic polymers. 2014.
73. US 20120142069 A1. Shea L.D., Woodruff T. K., Shikanov A. Interpenetrating biomaterial matrices and uses thereof. 2012.
74. US 20120052305 A1. Weber G.R. Composite structures using interpenetrating polymer network adhesives. 2012.
75. Aminabhavi T.M., Nadagouda M.N., More U.A., Joshi S.D., Kulkarni V.H., Noolvi M.N., Kulkarni P.V. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opinion on drug delivery. 2015. 12, no. 4: 669–688. https://doi.org/10.1517/17425247.2014.974871.
76. Eschbach F.O., Huang S.J. Hydrophilic-hydrophobic interpenetrating polymer networks and semi-interpenetrating polymer networks. American Chemical Society. 1994. 239, Сh. 9: 205–219. https://doi.org/10.1021/ba-1994-0239.ch009.
77. CA 2290743 A1. Robert L.S., Jennifer E.H., Kristi A.S. Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering. 2009.
78. Pohontu C., Popa M., Desbrieres J., Verestiuc L. Acrylates and methylcellulose based hydrogels. Synthesis, swelling properties and applications to inclusion and controlled release of bioactive matters. Cellulose chemistry and technology. 2016. 50, no. 5–6: 609–620.
79. Gozzelino G., Dell’Aquila G.A., Tobar D.R. Polymer networks with antibacterial activity by UV photopolymerization. Journal Applied Polymer Science. 2009. 112: 2334–2342. https://doi.org/10.1002/app.29504.
80. Banerjee S., Ray S., Maiti S., Sen K.K., Bhattacharyya U.K., Kaity S., Ghosh A. Interpenetrating polymer network(IPN): a novel biomaterial. International journal of applied pharmaceutics. 2010. 2, no. 1: 28–34.
81. Gratzl G., Paulik C., Hild S., Guqqenbichler J.P., Lackner M. Antimicrobial activity of poly(acrylic acid)block copolymers. Materials Science Eng. C Mater. Biol. Appl. 2014. 38: 94–100. https://doi.org/10.1016/j.msec.2014.01.050.
82. Kudumula K.K. Scope of polymer nano-composites in bio-medical applications. IOSR Journal of mechanical and civil engineering. 2016. 13, no. 2: 18–21. https://doi.org/10.9790/1684-1305021821.
83. Materials for biomedical applications (Sigma Aldrich materials science). Material Matters. 2010. 5, no. 3: 55–89.
84. Jain N., Sharma P.K., Banik A., Gupta A., Bhardwaj V. Pharmaceutical and biomedical applications of interpenetrating polymer network. Current Drug Therapy. 2011. 6: 263–270. https://doi.org/10.2174/157488511798109547.
85. Lohani A., Singh G., Bhattacharya S.S., Verma A. Interpenetrating polymer networks as innovative drug delivery systems. Publishing Corporation journal of drug delivery. 2014. 2014: 1–11. https://doi.org/10.1155/2014/583612.
86. Myunq D., Farooqui N., Zheng L.L., Koh W., Gupta S., Bakri A. Noolandi J., Cochran J.R., Frank C.W., Ta C.N. Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. Journal Biomed. Mater. Res. A. 2009. 90, no. 1: 70–81. https://doi.org/10.1002/jbm.a.32056.
87. Archana D., Manisha G., Divya J. A review on interpenetrating polymer network (IPN). World journal of pharmacy and pharmaceutical sciences. 2015. 4, no. 12: 389–399.
88. Gupta S., Parvez N., Bhandari A., Sharma P. K. Interpenetrating polymer network-based drug delivery systems: emerging applications and recent patents. Egyptian Pharmaceutical Journal. 2015. 14: 75–86. https://doi.org/10.4103/1687-4315.161266.
89. Myung D., Waters D., Wiseman M., Duhamel P.E., Noolandi J., Ta C.N., Frank C.W. Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol. 2008. 19, no. 6: 647–657. https://doi.org/10.1002/pat.1134.
90. Arya Soman, Flowerlet Mathew, Chacko A.J., Mini Alias, Vinoda G. Poosan. Interpenetrating polymer network (Ipn) – hydrogels. The Pharma Innovation. 2014. 3, no. 8: 59–66.
91. Ortega A., Bucio E., Burillo G. New Interpenetrating polymer networks of N-isopropylacrylamide/N- acryloxysuccinimide: synthesis and characterization. New Polym. Bull. 2008. 60: 515–524. https://doi.org/10.1007/s00289-007-0870-x.
92. Anzlovar A., Zigon M. Semi-Interpenetrating polymer networks with varying mass ratios of functional urethane and methacrylate prepolymers. Acta Chimica Slovenica. 2005. 52: 230–237.
93. Sabu T., Grande D., Cvelbar U., Raju K.V.S.N., Narayan R., Selvin P. T., Akhina H. Micro-and Nano-structured interpenetrating polymer networks: from design to applications. New Jersey: John Wiley and Sons, 2016: 432.
94. Liechty W.B., Kryscio D.R., Slaughter B.V., Peppas N.A. Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering. 2010. 1: 149–173. https://doi.org/10.1146/annurev-chembioeng-073009-100847.
95. Gandhi K.J., Deshmane S.V., Biyani K.R. Polymers in pharmaceutical drug delivery system: a review. International Journal of Pharmaceutical Sciences Review and Research. 2012. 14: 57–66.
96. Jelicic A., Friedrich A., Jeremic K., Siekmeyer G., Taubert A. Polymer hydrogel/polybutadiene/Iron oxide nanoparticle hybrid actuators for the characterization of NiTi implants. Materials.2009. 2: 207–220. https://doi.org/10.3390/ma2010207.
97. Li S., Liu X. Synthesis, characterization and evaluation of semi-IPN hydrogels consisted of poly(methacrylic acid) and guar gum for colon-specific drug delivery. Polymers for Advanced Technologies. 2008. 19: 371–376. https://doi.org/10.1002/pat.1018.
98. Bajpai A.K., Mishra A. Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine: an in-vitro dynamic study. Journal of Materials of Science: Mater. Med. 2008. 19: 2121–2130. https://doi.org/10.1007/s10856-007-3188-1.
99. Karabanova L.V., Mikhalovsky S.V., Lloyd A.W., Boiteux G., Sergeeva L.M., Novikova T.I., Lutsyk E.D., Meikle S. Gradient semi-interpenetrating polymer networks based on polyurethane and poly(vinyl pyrrolidone). Journal of Materials Chemistry. 2005. 15, no. 4: 499–507. https://doi.org/10.1039/b410178b.
100. Risbud M.V., Hardikar A.A., Bhat S.V., Bhonde R.R. pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J.Control. Rel. 2000. 68: 23–30. https://doi.org/10.1016/S0168-3659(00)00208-X.
101. Corneillie S., Lan P.N., Schacht E., Davies M., Shard A., Green R., Denyer S., Wassall M., Whitfield H., Choong S. Polyethylene glycol-containing polyurethanes for biomedical applications. Polymer International. 1998. 46, no. 3: 251–259. https://doi.org/10.1002/(SICI)1097-0126(199807)46:3<251::AID-PI6>3.0.CO;2-Z.
102. Pal K., Banthia A.K., Majumdar D.K. Polymeric Hydrogels: Characterization and Biomedical Applications. Designed Monomers and Polymers. 2009. 12, no. 3: 197–220. https://doi.org/10.1163/156855509X436030.
103. Koul V., Mohamed R., Kuckling D., Adler H.-J.P., Choudhary V. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly (acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids and Surfaces B. 2011. 83: no. 2: 204–213. https://doi.org/10.1016/j.colsurfb.2010.11.007.
104. Sun J., Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013. 6: 1285–1309. https://doi.org/10.3390/ma6041285.
105. Pescosolido L., Vermonden T., Malda J., Censi R., Dhert W.J., Alhaique F., Hennink W.E., Matricardi P. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomaterialia. 2011. 7, no. 4: 1627–1633. https://doi.org/10.1016/j.actbio.2010.11.040.
106. Bhattacharya S.S., Shukla S., Banerjee S., Chowdhury P., Chakraborty P., Ghosh A. Tailored IPN hydrogels bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polymer-Plastics Technology and Engineering. 2013. 52: 795–805. https://doi.org/10.1080/03602559.2013.763361.
107. Suresh P.K., Suryawani S.K., Dewangan D. Chitosan-based interpenetrating polymer network (IPN) hydrogels: A potential multicomponent oral drug delivery venicle. Pharmacie Globale (International journal of comprehensive pharmacy). 2011. 8, no. 1: 1–8.
108. Piozzi A., Francolini I., Occhiaperti L., Venditti M., Marconi W. Antimicrobial activity of polyurethanes coated with antibiotics: a new approach to the realization of medical devices exempt from microbial colonization. International Journal of Pharmaceutics. 2004. 280, no. 1–2: 173–183. https://doi.org/10.1016/j.ijpharm.2004.05.017.
109. Wilkes C.E., Summers J.W., Daniels C.A., Berard M.T. PVC handbook. Munich, Cincinnati: Hanser. 2005: 723.
110. Shadpour M., Vajiheh B. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal, and mechanical applications. European Polymer Journal. 2016. 84: 377–403. https://doi.org/10.1016/j.eurpolymj.2016.09.028.
111. Kaali P., Strömberg E., Aune R.E., Czel G., Momcilovic D., Karlsson S. Antimicrobial properties of Ag+ loaded zeolite polyester polyurethane and silicone rubber and longterm properties after exposure to in-vitro ageing. Polymer Degradation and Stability. 2010. 95: 1456–1465. https://doi.org/10.1016/j.polymdegradstab.2010.06.024.
112. Patel J.M., Savani H.D., Turakhiya J.M., Akbari B.V., Goyani M., Raj H.A. Interpenetrating polymer network (IPN): A noval approach for controlled drug delivery. Uni. J. Pharm. 2012. 1, no. 1: 1–11.
113. Ramaraj B., Radhakrishnan G. Hydrogel capsules for sustained drug release. J. Appl. Polymer Sci. 1994. 51: 979–988. https://doi.org/10.1002/app.1994.070510602.
114. Mundargi R.C., Patil S.A., Kulkarni P.V., Mallikarjuna N.N., Aminabhavi T.M. Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J. Microencapsul. 2008. 25: 228–240. https://doi.org/10.1080/02652040801896435.
115. Yue Y.M., Xu K., Liu X.G., Chen Q., Sheng X., Wang P.X. Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery. J. Appl. Polymer Sci. 2008. 108, no. 6: 3836–3842. https://doi.org/10.1002/app.28023.
116. Bhardwaj V., Harit G., Kumar S. Interpenetrating polymer network (IPN): novel approach in drug delivery. Int. J. Drug Develop. Res. 2012. 4, no. 3: 41–54.
117. Lohani A., Singh G., Bhattacharya S.S., Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J. Drug Delivery. 2014. 2014: 1–11. https://doi.org/10.1155/2014/583612.
118. Murugesh S., Mandal B.K. A review on interpenetrating polymer network. International Journal of Pharmacy and Pharmaceutical Sciences. 2012. 4: 1–7.
119. Singh P., Kumar S.K.S., Keerthi T.S., Mani T.T., Getyala A. Interpenetrating polymer network (IPN) microparticles and advancement in novel drug delivery system: a review. Pharm. Sci. Monitor. 2012. 3, no. 1: 1826–1837.
120. Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., Danquah M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Journal Nanotechnology. 2018. 9: 1050–1074. https://doi.org/10.3762/bjnano.9.98.
121. DeLeon V.H., Nguyen T.D., Nar M., D’Souza N.A., Golden T.D. Polymer nanocomposites for improved drug delivery efficiency. Materials Chemistry and Physics. 2012. 132, no. 2–3: 409–415. https://doi.org/10.1016/j.matchemphys.2011.11.046.
122. Jancar J., Douglas J.F., Starr F.W., Kumar S.K., Cassagnau P., Lesser A.J., Sternstein S.S., Buehler M.J. Current issues in research on structure and property relationships in polymer nanocomposites. Polymer. 2010. 51: 3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074.
123. Geraschenko І.І., Vasilchenko О.А. Nanotekhnolohii v medytsyni ta farmatsii. Problemy ekolohichnoi biotekhnolohii. 2012. 5, no. 1: 1–13.
124. Mykytiuk M.V. Nanochastynky ta perspektyvy yikh zastosuvannia v biolohii i medytsyni. Problemy ekolohii ta medytsyny. 2011. 15, no. 5–6: 41‒49.
125. Bououdina M., Rashdan S., Bobet J.L. Nanomaterials for biomedical applications: synthesis, characterization and applications. Ichiyanagi Hindawi Publishing Corporation. Journal of nanomaterials. 2013. 2013: 1–4. https://doi.org/10.1155/2013/962384.
126. Zare Y., Shabani I. Polymer/metal nanocomposites for biomedical applications. Materials Science and Engineering: C. 2016. 60: 195–203. https://doi.org/10.1016/j.msec.2015.11.023.
127. Mauricio M.D., Guerra-Ojeda S., Marchio P., Valles S.L., Aldasoro M., Escribano-Lopez I., Herance J.R., Rocha M., Vila J.M., Victor V.M. Nanopaticles in medicine: A focus on vascular oxidative stress. Oxidative medicine and cellular longevity. 2018. 2018: 1–20. https://doi.org/10.1155/2018/6231482.
128. Voronin Ye.P., Nosach L.V., Hunko V.M., Kharmas B. Heometrychne ta mekhano-sorbtsiine modyfikuvannia vysokodyspersnoho kremnezemu v umovakh hazovoho dyspersiinoho seredovyshcha. Fizyka i khimiia tverdoho tila. 2019. 20, no. 1: 22–26. https://doi.org/10.15330/pcss.20.1.26.
129. Kumar C.G., Pombala S., Poornachandra Y., Agarwal S.V. Synthesis, characterization, and applications of nanobiomaterials for antimicrobial therapy. In book: Nanobiomaterials in Antimicrobial Therapy Applications of nanobiomaterials. New York: William Andrew, 2016. 6, Ch.4: 103–152. https://doi.org/10.1016/B978-0-323-42864-4.00004-X.
130. Smith A.W. Biofilms and antibiotic therapy: Is there a role for combating bacterial resistance by the use of novel drug delivery systerms. Advanced drug delivery reviews. 2005. 57, no. 10: 1539–1550. https://doi.org/10.1016/j.addr.2005.04.007.
131. Nicholas D.S., Michelle A.O., Kathryn E.U. Antibiotic-containing polymers for localized, sustained drug delivery. Adv. drug delivery reviews. 2014. 78: 77–87. https://doi.org/10.1016/j.addr.2014.04.006.
132. Park S.-N., Kim J.K., Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials. 2004. 25, no. 17: 3689–3698. https://doi.org/10.1016/j.biomaterials.2003.10.072.
133. Jeong S., Yeo S.,Yi S. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of materials science. 2005. 40: 5407–5411. https://doi.org/10.1007/s10853-005-4339-8.
134. Schmidt G., Malwitz M.M. Properties of polymer-nanoparticle composites. Current Opinion in Colloid and interface science. 2003. 8: 103–108. https://doi.org/10.1016/S1359-0294(03)00008-6.
135. Karabanova L.V., Homza Yu.P., Bondaruk O.M., Nesin S.D., Voronin Ye.P., Nosach L.V. Nanokompozyty na osnovi poliuretan-poli(2-hidroksyetylmetakrylat)noi matrytsi ta nanonapovniuvacha densylu: termodynamika vzaiemodii ta osoblyvosti mikrostruktury. Ukrainskyi khimichnyi zhurnal. 2015. 81, no. 9: 52–59.
136. Kulkarni R.V., Sreedhar V., Mutalik S., Setty C.M., Sa B. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. International Journal of Biological Macromolecules. 2010. 47: 520–527. https://doi.org/10.1016/j.ijbiomac.2010.07.009.
137. Kulkarni P.V., Keshavayya J. Preparation and evaluation of polyvinyl alcohol transdermal membranes of salbutamol sulphate. International Journal of Current Pharmaceutical Research. 2010. 2: 1–35.
138. Changez M., Koul V., Dinda A.K. Efficacy of antibiotics loaded interpenetrating network hydrogel based on poly(acrylic acid) and gelatin for treatment of experimental osteomyelitis: in vivo study. Biomaterials. 2005. 26: 2095–2104. https://doi.org/10.1016/j.biomaterials.2004.06.008.
139. Jeyanthi R., Rao K.P. In vivo biocompatibility of collagen-poly(hydroxyethyl methacrylate) hydrogels. Biomaterials. 1990. 11: 238–243. https://doi.org/10.1016/0142-9612(90)90004-A.
140. Ke Wang, Yuting Hao, Yingna Wang, Jinyuan Chen, Lianzhi Mao, Yudi Deng, Junlin Chen, Sijie Yuan, Tiantian Zhang, Jiaoyan Ren, Wenzhen Liao. Functional hydrogels and their application in drug delivery, biosensors, and tissue engineering. International Journal of Polymer Science. 2019. 2019: 1–14. Article ID 3160732. https://doi.org/10.1155/2019/3160732.
141. Horbyk P.P., Pentiuk O.O., Shtatko O.I. Perspektyvy stvorennia kombinovanykh likarskykh zasobiv na osnovi vysokodyspersnoho kremnezemu. Nanosystemy, nanomaterialy, nanotekhnolohii. 2008. 6, no. 1: 315–330.
142. Uaitsaids Dzh., Eihler D., Anders R. Nanotekhnolohiia v naiblyzhche desiatylittia. Prohnoz napravlenosti doslidzhen / Pid. Red. M.K. Roko, R.S. Uyliamsa y P. Alyvysatora. Per.z anhl. – Moskva: Myr, 2002. 292.
143. Karabanova L.V., Homza Yu.P., Nesyn S.D., Bondaruk O.N., Herashchenko I.I., Voronyn E.F., Nosach L.V., Zar-
ko V.I., Pakhlov Ye.M. Nanostrukturovani polimerni materialy i nanokompozyty na osnovi vzaiemopronykaiuchykh polimernykh sitok dlia biomedychnoho pryznachennia. [Rozdil v knyzi: «Nanorozmirni systemy i nanorozmirni materialy: doslidzhennia v Ukraini»] / pid red. A.H. Naumovtsa. Kiev: Akademperiodyka, 2014: 724–730.
144. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. [Chapter of Springer Book: Nanophysics, Nanophotonics, Surface Studies and Application]. Berlin: Springer, 2016: 451–475. https://doi.org/10.1007/978-3-319-30737-4_38.
145. Klonos P., Chatzidogiannaki V., Roumpos K., Spyratou E., Georgiopoulos P., Kontou E., Pissis P., Gomza Y., Ne-sin S., Bondaruk O., Karabanova L. Structure-properties investigations in hydrophilic nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer networks and nanofiller densil for biomedical application. Journal of Applied Polymer Science. 2016: 43122–43137. https://doi.org/10.1002/app.43122.
146. Karabanova L.V., Homza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Biosumisni nanokompozyty na osnovi poliuretan-poli(2-hidroksyetylmetakrylat)noi matrytsi ta napovniuvacha, modyfikovanoho biolohichno aktyvnoiu aminokyslotoiu hlitsyn: struktura i termodynamika vzaiemodii. Polimernyi zhurnal. 2016. 38, no. 3: 225–236.
147. Bershtein V., Pissis P., Sukhanova T., Karabanova L., Yakushev P., Bondaruk O., Klonos P., Spyratou E., Vylegzhani-na M., Voronin E. Biocompatible nanocomposites based on semi-interpenetrating polymer networks and nanosilica modified by bioactive amino acid tryptophan: morphology, dynamics and properties. European Polymer Journal. 2017. 92, no. 2: 150–164. https://doi.org/10.1016/j.eurpolymj.2017.04.038.
148. Karabanova L.V., Bondaruk O.M., Voronin Ye.F. Nanokompozyty na osnovi bahatokomponentnoi polimernoi matrytsi ta napovniuvacha densylu: relaksatsiini vlastyvosti ta morfolohiia. Khimiia, fizyka i tekhnolohiia poverkhni. 2020. 11, no. 2: 235–249. https://doi.org/10.15407/hftp11.02.235.
149. Karabanova L.V., Gun’ko V.M., Bershtein V.A., Yakushev P.N., Bondaruk O.M., Turova A.A., Zarko V.I., Pakh-lov E.M., Vylegzhanina M.E. Mikhalovsky S.V. Effect of nanooxides surface functionalization on the structure and interfacial behavior of hybrid polyurethane-poly(2-hydroxyethyl methacrylate) – nanooxide composites. Materials XIII Ukrainian-Polish Symposium Theoretical and Experimental Studies of Interfacial Phenomena and their Technological Applications simultaneously with 4-th COMPOSITUM conference “Hybride Nanocomposites and Their Application”, 11-14 September, 2012: Кyiv, 2012: 43.
150. Karabanova L.V., Bondaruk O.M., Homza Yu.P., Nesin S.D., Voronin E.F., Nosach L.V. Nanokompozyty na osnovi poliuretan/ poli(2-hidroksyetylmetakrylatnoi) polimernoi matrytsi ta napovniuvacha densylu. Materialy 7-moi vidkrytoi Ukrainskoi konferentsii molodykh vchenykh z vysokomolekuliarnykh spoluk (VMS-2012), 15-18 zhovtnia, 2012: Kyiv, 2012: 40. https://doi.org/10.15407/orientw2012.04.015.
151. Herashchenko I.I., Karabanova L.V., Voronin Ye.P., Nosach L.V., Zarko V.I., Pakhlov Ye.M., Bondaruk O.M., Markina A.I. Nanokompozyty na osnovi poliuretan/poli(2-hidroksyetylmetakrylatnykh) vzaiemopronyknyk sitok ta modyfikovanoho kremnezemu yak depo bioaktyvnykh substantsii. Materialy Vseukrains. konfer. z mizhnarodnoiu uchastiu “Khimiia, Fizyka i Tekhnolohiia Poverkhni”, 15-17 travnia, 2013: Kyiv, 2013: 186.
152. Karabanova L., Gomza Yu., Nesin S., Bondaruk O., Voronin E. Nosach L. Nanocomposites based on multicomponent polymer matrix and nanofiller densil for biomedical application. Materials All-Ukrainian conference with international participation «Chemistry, Physics and Technology of Surface», 15-17 травня, 2013: Київ, 2013: 189.
153. Karabanova L., Gomza Yu., Nesin S., Bondaruk O., Mikhalovsky S. Nanocomposites based on Polyurethane /Poly(2-hydroxyethyl methacrylate) Polymer Matrix and Nanofiller Densil. Materials International Soft Matter Conference, 15-19 September, 2013: Roma, Italy, 2013: 162.
154. Karabanova L.V., Gomza Yu. P., Nesin S.D., Bondaruk O.M., Voronin E.F. Nosach L.V. Polyurethane / Poly(2-hydroxyethyl methacrylate) semi-Interpenetrating Polymer Networks Matrix and Nanofiller Densil Composites for Biomedical Application. Materials XIII Ukrainian conference on macromolecular compounds, 7-10 October, 2013: Kyiv, (HMC-2013): 198–200.
155. Chatzidogiannaki Vasileia, Klonos Panagiotis, Kyritsis Apostolos, Spyratou Ellas, Bondaruk Oksana, Karabanova Lyudmyla, Pissis Polycarpos. Thermal and Hydration Study on Hydrophilic Nanocomposites based on Polymer/Silica for Biomedical Application. Materials 11-th Mediterranean Conference on Calorimetry and Thermal Analysis, 12-15 June, 2013: Athens, Greece, (MEDICTA-2013).
156. Karabanova L.V., Bondaruk O.M., Gomza Yu.P., Nesin S.D., Voronin E.F., Nosach L.V. Nanocomposites based on polyurethane /poly(2-hydroxyethyl methacrylate) polymer matrix and nanofiller densil for biomedical application. Materials International Conference “Nanotechnology and Nanomaterials” (NANO-2014),23-30 August, 2014: Lviv, 2014: 130.
157. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.F., Nosach L.V. Nanocomposites based on polyurethane /poly(2-hydroxyethyl methacrylate) polymer matrix and nanofiller densil. Materials XIX Ukrainian conference on inorganic chemistry, 7-11 September, 2014: Odessa, 2014: 112.
158. Bondaruk O.M., Karabanova L.V., Homza Yu.P., Nesin S.D., Herashchenko I.I., Voronin E.F., Nosach L.V. Biosumisni nanokompozyty na osnovi VPS i nanonapovniuvachiv z poverkhniamy, modyfikovanymy BAS: termodynamika i strukturni vlastyvosti. Materialy Vseukrains. konferents. z mizhnarodnoiu uchastiu “Khimiia, Fizyka i Tekhnolohiia Poverkhni”, 13-15 travnia, 2015: Kyiv, 2015: 82.
159. Herashchenko I.I., Karabanova L.V., Voronin Ye.P., Nosach L.V., Siora I.V., Kukolevska O.S., Bondaruk O.M., Chornopyshchuk R.M. Medyko-biolohichne doslidzhennia nanokompozytnoho materialu na polimernii osnovi ”Polidens”. Materialy Vseukrains. konferents. z mizhnarodnoiu uchastiu “Khimiia, Fizyka i Tekhnolohiia Poverkhni”, 13-15 travnia, 2015: Kyiv, 2015: 226.
160. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Geraschenko I.I., Voronin E.F., Nosach L.V. Nanocomposites based on multicomponent polymer matrix and nanofillers modifiered by biologically active substances for biomedical application. Materials International Conference “Nanotechnology and Nanomaterials”, 26-29 August, 2015: Lviv, (NANO-2015): 391.
161. Karabanova L.V., Bondaruk O.M., Homza Yu.P., Nesin S.D., Voronin E.F., NosachL.V. Struktura i termodynamika vzaiemodii v nanokompozytakh na osnovi PU/PHEMA VPS ta biolohichno-aktyvnykh napovniuvachiv. Materialy XV Vseukrains. naukovo-praktychnoi konferentsii “Problemy mekhaniky ta fizyko-khimii kondensovanoho stanu rechovyny”, 17-19 veresnia, 2015: Mykolaiv, 2015: 128–132.
162. Bondaruk O.M., Karabanova L.V. Biosumisni nanokompozyty na osnovi VPS i napovniuvachiv z poverkhniamy, modyfikovanymy BAS: termodynamika vzaiemodii polimernykh komponentiv z napovniuvachamy. Materialy V Rehional. naukovo-praktychn. konf. “Zhytomyrski khimichni chytannia 2016”, 18 travnia, 2016: Zhytomyr, 2016: 67–72. https://doi.org/10.1016/j.stem.2015.11.017.
163. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.F., Nosach L.V. Nanocomposites based on semi-IPN and nanofiller modified by aminoacid glycine for biomedical application. Materials International Conference “Nanotechnology and Nanomaterials” (NANO-2016), 24-27 August, 2016: Lviv, 2016: 99.
164. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Nosach L.V., Voronin E.P. Nanocomposites based on semi-IPN and nanofiller modified by aminoacid glycine for biomedical application. Materials Symposium ZU “Advanced composite materials: production, testing, applications” (EMRS FALL 2916, 2016), 19-22 September, 2016: Warsaw, Poland, 2016: 89.
165. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Geraschenko I.I., Voronin E.F., Nosach L.V. Nanocomposites based on polyurethane/poly(2-hydroxyethyl methacrylate) polymer matrix and nanofillers modified by biologically active substances for biomedical application. Materials 4-th International Conference “Nanotechnologies” (Georgia, NANO-2016), 24-27 October, 2016: Tbilisi, 2016: 93.
166. Karabanova L.V., Bondaruk O.M., Gomza Yu.P., Nesin S.D., Voronin E.P., Nosach L.V. Structure and thermodynamic of interactions in the nanocomposites based on PU/PHEMA matrix and nanofillers modified by aminoacids glycine and tryptophan. Materialy Vseukrains. konf. z mizhnarodnoiu uchastiu “Khimiia, fizyka i tekhnolohiia poverkhni“, 24-25 travnia, 2017: Kyiv, 2017: 34.
167. Bershtein V.A., Pissis P., Sukhanova T.E., Karabanova L.V., Yakushev P.N., Bondaruk O., Klonos P., Spyratou E., Vylegzhanina M., Voronin E. Morphology, Dynamics and Properties of Biocompatible Nanocomposites based on PU-PHEMA semi-IPNs and Nanosilica modified by Amino acid Tryptophan. Materials 9th International Symposium “Molecular Mobility and Order in Polymer Systems”, 19-23 June, 2017: St-Petersburg, 2017: 322.
168. Karabanova L.V., Bondaruk O.M., Nesin S.D. Isothermal sorption and thermodynamic of interactions in the nanocomposites based on PU-PHEMA semi-IPN and nanosilica modified by amino acid tryptophan. Materials 3 rd Ukrainian-Polish scientific conference “Membrane and sorption processes and technologies”(the National University of Kyiv-Mogyla Academy), 12-14 December, 2017: Kyiv, 2017: 116–119.
169. Karabanova L.V., Bondaruk O.M., Homza Yu.P., Nesin S.D., Babkina N.V., Voronin Ye.F., Nosach L.V. Nanokompozyty na osnovi poliuretan/poli(2-hidroksyetylmetakrylat)noi polimernoi matrytsi i napovniuvacha densylu dlia biomedychnoho zastosuvannia. Materialy XIV Ukrain. konf. z vysokomolekul. spoluk (VMS–2018), 15-18 zhovtnia, 2018: Kyiv, 2018: 40–42.
170. Karabanova L.V., Bondaruk O.M., Nesin S.D., Geraschenko I.I., Voronin E.F, Nosach L.V. Nanocomposites based on PU/PHEMA interpenetrating polymer networks and different nanofillers for biomedical and other applications. Materialy XIV Ukrain. konf. z vysokomolekul. spoluk (VMS–2018), 15-18 zhovtnia, 2018: Kyiv, 2018: 124–126.
171. Karabanova L.V., Bondaruk O.M., Babkina N.V. Dynamichno-mekhanichni vlastyvosti nanokompozytiv na osnovi poliuretan/poli(2-hidroksymetakrylat)noi matrytsi ta napovniuvacha densylu dlia biomedychnoho zastosuvannia. Materialy konferentsii «Aktualni zadachi khimii 2019: doslidzhennia ta perspektyvy», 17 kvitnia, 2019: Zhytomyr, 2019: 344–346.
172. Karabanova L.V., Bondaruk O.M., Bershtein V.A., Sukhanova T.E., Voronin E.F., Klonos P., Pissis P. Nanocomposites based on PU/PHEMA semi-interpenetrating polymer networks and nanosilica modified by amino acid tryptophane: morphology and properties. Materials Ukrainian Conference with International Participation “Chemistry, Physics and Technology of Surface” and workshop “Metal-based biocompatible nanopaticles: synthesis and applications”, 15-17 May, 2019: Kyiv, 2019: 42.