2022 (1) 2
https://doi.org/10.15407/polymerj.44.01.024
REVIEW OF EVALUATION METHODS FOR BIODEGRADABILITY OF POLYMERIC MATERIALS
V.V. Boiko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: valboyko54@gmail.com
ORCID: 0000-0002-5527-0468
S.V. Riabov,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: sergii.riabov@gmail.com
ORCID: 0000-0003-2996-3794
L.V. Kobrina,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: kobrina.larisa@gmail.com
ORCID: 0000-0001-6801-0801
T.V. Dmitrieva,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-3526-8395
Polym. J., 2022, 44, no. 1: 24-40.
Section: Review.
Language: Ukrainian.
Abstract:
Development and further use of biodegradable polymeric materials requires prior assessment the degree of their biodegradation. There are a large number of methods developed taking into account the specifics of the destruction of polymeric materials. The purpose of this review is to systematize scientific and technical information regarding methods for assessing the biodegradation of polymeric materials. Laboratory methods of researches, including the following: influence of abiotic factors (temperature, moisture, UV irradiation), impact of microorganisms (fungi, bacteria, yeast), respiratory methods (Sturm, Zahn-Wellness, etc.), conditions of composting, enzyme analysis methods, ecotoxicity tests are given. Test methods in both aqueous and solid media are also presented. The parameters of biodegradability, which determine the degree of destruction (mass, strain strength, molecular weight distribution, temperature characteristics, macro-and microstructure of samples, etc.) or the composition and properties of the biological system in which biodegradation takes place (acidity, respiratory activity, chemical and microbiological composition of soil or other biological environment, etc.) are considered as well. Advantages of laboratory methods for studying the biodegradation of polymeric materials could be realized in the given directions: varying of the experimental conditions (temperature, humidity, UV and IR radiation, the presence of aggressive media, etc.), biochemical compositions of the environment; study of the ability of individual strains of microorganisms to dispose of polymer composites and targeted selection of the most active microbial associations (in particular, for the manufacture of special biocomposts); utilize of simple and fast methodical approaches and modern devices for evaluation experiments. However, laboratory methods do not always allow modeling a set of endogenous and exogenous factors that define the process of biodegradation in the natural environment. Therefore, this review also considers methods for assessing biodegradation in the environment. So, the essence of the test regarding the samples’ burial in the ground is given. International standards governing methods for assessing the biodegradability of organic substances and polymeric materials are summarized. Applying different test methods, one can evaluate the whole process of biodegradation of polymeric materials, consisting of several stages, which occur regardless the type of microorganisms and accompanying abiotic factors, and can be represented as follows: adhesion → colonization → biodeterioration → biofragmentation → assimilation → mineralization.
Thus, the adhesion and colonization of microorganisms can be estimated by visual, bioindicator and spectral methods. Abiotic degradation and biodeterioration are associated with physical tests (e.g., thermal and physico-mechanical). Biofragmentation is detected by identifying fragments of lower molecular weight (i.e. by chromatographic methods). In turn, assimilation is assessed by the amount of metabolites produced using, for example, respirometric methods or involving analysis of microbial biomass (e.g., macroscopic and microscopic observations). The most productive should be considered a comprehensive approach to the study of biodegradation of polymers. To determine the reliable kinetic parameters and link the mechanism of this process, it is necessary to carry out a comparative analysis of the results of physical, chemical, microbiological experiments, which are carried out in both laboratory and natural conditions.
Keywords: biodegradable polymeric materials, test methods, evaluation of biodegradation, parameters of control.
REFERENCES
1. Towards Common Ground − Meeting Summary of the International Workshop on Biodegradability. Annapolis, Maryland, USA, 20−21st October, 1992.
2. Eubeler J.P., Bernhard M., Zok S., Knepper T.P.Environmental biodegradationof synthetic polymers I. Testmethodologies and procedures.Trends in Analytical Chemistry, 2009, 28, no. 9: 1057-1072 .https://doi.org/10.1016/j.trac.2009.06.007.
3. International Organization for Standardization (ISO). ISO Methods: 7827 (2010); 9409(1999); 9439(1999); 9887 (1992); 9888 (1999); 10634 (2018); 10707 (1994); 10708 (1997); 11733 (2004); 11734 (1995); 14592-1 (2002);14592-2 (2002);14593 (1999); 14851 (2019); 14852 (2018); 14855-1 (2012);14855-2 (2018); 16221 (2001); ISO/TR 15462 (2006).ISO, Geneva, Switzerland.
4. Organization for Economic Co-operation and Development (OECD). OECD Guidelines: 304А; 306; 307; 309; 311. OECD, Paris, France.
5. ASTM International, ASTM Test Methods for Testing of Chemicals:D5209-92; D5210-92; D5247-92; D5271-02;D5338-92;D6003-96; D7081-05; G 21-90; G 22-76. ASTM International, West Conshohocken, PA, USA.
6. Derzhavnyy komitet Ukrayiny po standartyzatsiyi, metrolohiyi ta sertyfikatsiy [State Committee of Ukraine for Standartization, Metrology and Certification]:DSTU ISO9887 (2002); DSTU 4089 (2001); DSTU ISO11733 (2009); DSTU EN14995 (2018). Derzhstandart Ukrayiny, Kyiv, Ukrayine.
7. Madorskiy S. Termicheskoye razlozheniye organicheskikh polimerov [Thermal decomposition of organic polymers]. Per. s angl. Mir , Moskva, 1967: 326.
8. Khmel’nitskiy R.A., Lukashenko I.M., Brodskiy Ye.S. Piroliticheskaya mass-spektrometriya vysokomolekulyarnykh soyedineniy [Pyrolyticmassspectrometry of macromolecular compounds ]. Khimiya, Moskva, 1980: 280.
9. ASTM D5510-94(2001) Standard Practice for Heat Aging of Oxidatively Degradable Plastics (Withdrawn 2010).
10. SavelyevaN.V., PaskoN.I., DrebezovaL.P., BoikoV.V., KobrinaL.V., DmitrievaT.V.Rubbersbasedonstyrene-butadieneruber with vegetableadditives. Voprosy Khimii IKhimicheskoi Technologii. 2007, no.5: 166–169.
11. Anthony G.M .Kinetic and chemicalstudies of polymer cross-linkingusing thermal gravimetry and hyphenated methods. Degradation of polyvinylchloride. Polym Degrad Stab, 1999, 64, no.3: 353–357. https://doi.org/10.1016/S0141-3910(98)00129-3.
12. Morancho J.M., Ramis X., Fernandez X., Cadenato A., Salla J.M., Valles A., Contat L., Ribes A. Calorimetric and thermogravimetricstudies of UV-irradiatedpolypropylene/starch-basedmaterials aged in soil. Polym Degrad Stab., 2006, 91, no 1: 44–51. https://doi.org/10.1016/j.polymdegradstab.2005.04.029.
13. Kompleksnyy termicheskiy analiz: uchebnoye posobiye [Complex thermal analysis: textbook]/Ed. V.V. Gusarov. Lema, SPb., 2017: 193.
14. Abbas-Abadi M.S.The effect of process and structural parameters on the stability, thermo-mechanical and thermal degradation of polymers with hydrocarbon skeleton containing PE, PP, PS, PVC, NR, PBR and SBR. Journal of Thermal Analysis and Calorimetry , 2021, 143: 2867–2882. https://doi.org/10.1007/s10973-020-09344-0.
15. Singh B., Sharma N.Mechanistic implications of plastic degradation. Polym Degrad Stab., 2008, 93, no. 3: 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.
16. Wilkie C.A. TGA/FTIR: an extremely useful technique for studying polymer degradation. Polym Degrad Stab., 1999, 66, no. 13: 301–306. https://doi.org/10.1016/S0141-3910(99)00054-3
17. Budrugeac P. The evaluation of the non-isothermal kinetic parametersof the thermaland thermo-oxidative degradation of polymersandpolymeric materials:its use and abuse.Polym Degrad Stab., 2000, 71, no. 1:185–187.https://doi.org/10.1016/S0141-3910(00)00148-8.
18. Mohamed A., Gordon S.H., Biresaw G.Poly (lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, andphotoacoustic infrared spectroscopy. Journal of applied polymer science, 2007, 106, no. 3: 1689–1696. https://doi.org/10.1002/app.26783.
19. Drzeżdżon J., JacewiczD., Sielicka A., Chmurzyńskia L. Characterization of polymers basedon differential scanningcalorimetry based techniques. Trends in Analytical Chemistry, 2019 , 110 : 51–56. https://doi.org/10.1016/j.trac.2018.10.037.
20. Arráez F.J., Arna lM.L., Müllr A.J. Thermal and UV degradation of polypropylene with pro-oxidant.Abiotic characterization.Journal of applied polymer science, 2018, 135, no. 14: 46088–46101. https://doi.org/10.1002/app.46088.
21. Thomas D., Zhuravlev E., Wurm A., Schick C., Cebe P. Fundamental thermal properties of polyvinyl alcoholby fast scanningcalorimetry. Polymer, 2018,137: 145–155. https://doi.org/10.1016/j.polymer.2018.01.004.
22. Cuadri A.A., Martín-Alfonso J.E. Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polym Degrad Stab., 2018, 150: 37–45. https://doi.org/10.1016/j.polymdegradstab.2018.02.011.
23. Segura González E.A., Olmos D., Lorente M.Á. ,Vilaz I., González-Benito J. Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymer, 2018, 10, no. 12: 1365–1379. https://doi.org/10.3390/polym10121365.
24. Beinon Dzh. Mas-spectrometriyaIeyo primenenie v organicheskoi chimii[ Massspectrometry and itsuseinorganic chemistry]. Per.s anhl. Mir, Moskva, 1964: 701.
25. Bikiaris D.N., Chrissafis K., Paraskevopoulos M., Triantafyllidis K.S., Antonakou E.V. Investigation of thermal degradation mechanism of an aliphaticpolyester using pyrolysis–gas chromatography–mass spectrometry anda kinetic study of the effect of the amount of polymerization catalyst. Polym Degrad Stab., 2007, 92, no. 4:525–536. https://doi.org/10.1016/j.polymdegradstab.2007.01.022.
26. Soto-Oviedo M.A., Lehrle R.S., Parsons I.W., Paoli M.A.D. Thermal degradation mechanismand rate constants of the thermal degradationof poly(epichlorohydrin-co-ethylene oxide), deduced from pyrolysis-GS-MS studies. Polym Degrad Stab., 2003, 82, no. 3: 463–472. https://doi.org/10.1016/S0141-3910(03)00131-9.
27. Boiko V.V., Riabov S.V., Kobrina L.V., Dmitrieva T.V., Bortnitsky V.I. Usingthemethodofpyrolyticmassspectrometryinthestudyofbiodegradablepolymericmaterials. Polymer journal, 2021, 43, no.1: 41–53. https://doi.org/10.15407/polymerj.43.01.041.
28. Bhaskar T., Matsui T., Kaneko J., Uddin Md.A., Muto A., Sakata Y. Novelcalcium based sorbent (Ca-C) for the dehalogenation(Br, Cl) processduring halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br)pyrolysis. Green Chem., 2002, no. 4: 372–375. https://doi.org/10.1039/B203745A.
29. Singh R.K., Biswajit Ruj, Sadhukhana A.K., Gupta P. Thermal degradation of wasteplastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management,2019, 239: 395–406. https://doi.org/10.1016/j.jenvman.2019.03.067.
30. Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F., Nava-Saucedo J.-E. Polymer biodegradation: mechanisms and estimation techniques.Chemosphere, 2008,73, no.4: 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064.
31. Strashenko V.K., Baklan D.V., Myronyuk O.V. Research of change of angle of wetting of polystyrene in the conditions of artificial aging. Thesis reports of the III International Conf. (XIII Ukrainian) «Chemical problems of today». March 25–27, 2020, Vinnytsia. S.182.
32. Berkowski K.L., Potisek S.L., Hickenboth C.R., Moore J.S. Ultrasound-induced site-specific cleavage of azo-functionalized poly (ethylene glycol). Macromolecules, 2005,38, no.22:8975–8978. https://doi.org/10.1021/ma051394n.
33. Ojeda T.F.M., Dalmolin E., Forte M.M.S., Jacques R.J.S., Bento F.M., Camargo F.A.O. Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym Degrad Stab., 2009, 94, no.6: 965-970.https://doi.org/10.1016/j.polymdegradstab.2009.03.011.
34. Breslin V.T., Li B. Weathering of starch–polyethylene composite films in the marine environment. Journal of applied polymer science, 1993, 48, no.12: 2063–2079. https://doi.org/10.1002/app.1993.070481201.
35. Scott G. Photo-biodegradable plastics:their role in the protection of the environment. Polym Degrad Stab., 1990, 29, no.1: 135–154. https://doi.org/10.1016/0141-3910(90)90026-4.
36. Agamuthu P., Faizura P.N. Biodegradability of degradable plastic waste. Waste management & research, 2005, 23, no 2: 95–100. https://doi.org/10.1177/0734242X05051045.
37. Jiang L., Wolcott M.P., Zhang J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules, 2006, 7, no.1: 199–207. https://doi.org./10.1021/bm050581q.
38. Catia Bastioli. Handbook of Biodegradable Polymers. 2nd Ed. Smithers Information Ltd., 2014: 704.
39. Ermolovich O.A., Makarevich A.V., Goncharova E.P., Vlasova G.M. Methods for assessing the biodegradability of polymeric materials. Biotechnology, 2005, no.4: 47–54.
40. Van der Zee M. Methodsfor evaluating the biodegradability of environmentallydegradable polymers. 2020. De Gruyter . https://doi.org/10.1515/9781501511967-001.
41. Lee B., Pometto III A. L., Fratzke A., Bailey Jr. T. B. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces. Applied Environmental Microbiology, 1991, 57: 678–685. https://doi.org/10.1128/aem.57.3.678-685.1991.
42. Sturm R. N. Biodegradabiiy of nonionic surfedants: Screening test for predicting rate and ultimate.J. Am. Oil. Chem. Soc., 1973, 50: 159–167. https://doi.org/10.1007/BF02640470.
43. Van der Zee M., Stoutjesdijk J.H., Van der Heijden P. A. A. W., de Wit D. Structure-Biodegradation Relationships of PolymericMaterials. 1. Effect of Degree of Oxidation onBiodegradability of Carbohydrate Polymers. Environmental Polymer Degradation,1995,3, no. 4: 235–242. https://doi.org/10.1007/BF02068678.
44. ItävaaraM., Vikman M. An Overview of Methods for Biodegradability Testing ofBiopolymers and Packaging Materials.Environmental Polymer Degradation, 1996, 4, no.1: 29–36. https://doi.org/10.1007/BF02083880.
45. Nyholm N. The European system of standardizedlegaltests for assessing the biodegradabilityof chemicals. Environmental Toxicology and Chemistry, 1991, 10, no10: 1237-1246.https://doi.org/10.1002/etc.5620101002.
46. Strotmann U.J.,SchwarzH.,Pagga U.The combined CO2/DOC test – a new method to determine the biodegradability of organic compounds. Chemosphere, 1995, 30, no. 3: 525–538. https://doi.org/10.1016/0045-6535(94)00415-Q.
47. Itävaara M., Vikman M. A simple screening test for studying the biodegradability of insoluble polymers. Chemosphere, 1995, 31, no. 11/12: 4359–4373. https://doi.org/10.1016/0045-6535(95)00304-Q.
48. Andrady A.L.Assessment of Environmental Biodegradation of Synthetic Polymers. Macromol. Chem. Phys., 1994,34, no. 1: 25–76. https://doi.org/10.1080/15321799408009632.
49. Richterich K., Berger H., Steber J. The ‘two-phase closed boltle test’ – a suitable method for the determination of ‘ready biodegradability’ of poorly soluble compounds. Chemosphere, 1998, 37, no.2: 319–326. https://doi.org/10.1016/S0045-6535(98)00049-6.
50. Száraz L., Beczner J., Kayser G. 99Investigation of the biodegradability of water-insoluble materials ina solid test based on the adaptation of a biological oxygen. Polym Degrad Stab., 2003,81, no.3: 477–482. https://doi.org/10.1016/S0141-3910(03)00133-2.
51. Zvyagintsev D.G. Vzaimodeystviye microorganizmov s tverdymi poverkhnostyami [Interaction of microorganism swithhard surfaces]. MGU, Moskva, 1973:175 .
52. Patent RSt No. 950457. Russia. A method for identifying microorganisms using at least two chromogens. Publ. 1995.
53. Lowry O.H., Rosebrough N.J., Farr A.L. Protein measurement with the Folin reagent. J. of Biological Chemistry, 1951, 193: 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6.
54. Khimicheskaya entsiklopediyav 5 t. [Chemical encyclopedia]. Red.kol. I.L. Knunyantsidr. T.1. Sovetskayaentsiklopediya , Moskva, 1988: 623.
55. Kozitsina L.A., Kupletskaya N.B. Primeneniye UF-, IK- I YAMR-spektroskopii v organicheskoy khimii. Ucheb. Posobiye dlya vuzov. [Application of UV, IR and NMR spectroscopy in organic chemistry. Textbooks for universities]. Vysshayashkola, Moskva, 1971: 264.
56. Pinchuk L.S., Makarevich A.V., Vlasova G.M., Kravtsov A.G., Shapovalov V.A. Electret-thermal analysis to assessbiodegradation of polymer composites. Internat. Biodeterioration & Biodegradation, 2004, 54, no 1: 13–18. https://doi.org/10.1016/j.ibiod.2003.11.005.
57. Bocharov B.V., Belousova A.A., Skribachilin V.B. Standartizatsiya v oblasti biopovrezhdeniy [Biodeterioration standardization]. Nauka, Moskva, 1983:40–56.
58. Sharabi N.E., Bartha R. Testing of some assumptions about biodegradability as measured by carbon dioxide evolution. Appl Environ Microbiol., 1993, 59, no.4: 1201-1205.https://doi.org/10.1128/aem.59.4.1201–1205.1993.
59. Kaznacheyev K.V., Gumargaliyeva K.Z., Moiseyev YU.V. Adgeziya konidiy Aspergillusnigerk razlichnym polimernym poverkhnostyam. [Adhesion of Aspergillus niger conidia to various polymer surfaces ]. Doklady Akademii nauk SSSR, 1986, 291, no. 5: 1241–1244.
60. Pagga U., Beimborn D.B., Boelens J., De Wilde B. Determination of the aerobic biodegradability of polymeric material in laboratory controlled composting test. Chemosphere ,1995, 31, no. 11–12: 4475–4487.https://doi.org/10.1016/0045-6535(95)00326-4.
61. Walter T., Augusta J., Müller R.J. , Widdecke H., Klein J. Enzymatic degradation of a model polyester by lipase from Rhizopusdelemar. Enzyme and microbial technology, 1995, 17, no. 3: 218–224. https://doi.org/10.1016/0141-0229(94)00007-E.
62. Marten E., Müller R.J., Deckwer W.D. Studies on the enzymatic hydrolysis of polyesters: I. Low molecular mass model esters and aliphatic polyesters. PolymDeg Stab., 2003, 80, no.3: 485–501.https://doi.org/10.1016/S0141-3910(03)00032-6.
63. Marten E., Müller R.J., Deckwer W.D. Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromaticcopolyesters. Polym Deg Stab., 2005, 88, no.3: 371–381. https://doi.org/10.1016/j.polymdegradstab.2004.12.001.
64. Matsumura S., Shimura Y. , Toshima K., Hatanaka T. Molecular design of biodegradable functional polymers, 4 Poly(vinyl alcohol) block as biodegradable segment. Macromol. Chem. Phys., 1995, 196,no.11: 3437–3445. https://doi.org/10.1002/macp.1995.021961101.
65. Glasser W.G., McCartney B.K., Samaranayake G. Cellulose derivatives with a low degree of substitution.3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechnol.Prog.,1994, 10, no 2: 214–219. https://doi.org/10.1021/bp00026a011.
66. Rivard C., Moens L., Roberts K., Brigham J., Kelley S.. Starch esters as biodegradable plastics: Effects of ester group chainlength and degree of substitution on anaerobic biodegradation. Enzyme and microbial technology,1995, 17, no. 9: 848–852. https://doi.org/10.1016/0141-0229(94)00120-G.
67. Strantz A.A., Zottola E.A. Stability of cornstarch-containing polyethylene films to starch-degrading enzymes. Journal of food protection, 1992, 55, no. 9: 736–738. https://doi.org/10.4315/0362-028X-55.9.736.
68. Coma V., Couturier Y., Pascat B., Bureau G., Cuq J.L., Guibert S. Estimation of the biofragmentability of packaging materials by an enzymatic method. Enzyme and microbial technology, 1995, 17, no. 6: 524–529. https://doi.org/10.1016/0141-0229(94)00064-X.
69. Banerjee A., Chatterjee K., MadrasG.Enzymatic degradation of polymers: a brif review. Materials Science and Technology,2014,30, no. 5: 567–573. https://doi.org/10.1179/1743284713Y.0000000503.
70. Tosin M., Weber M., Siotto M., Lott C., Degli Innocenti F. Laboratory testmethods to determine the degradation of plastics in marine environmental conditions.Frontiers in microbiol., 2012, 3: 1–9. https://doi.org/10.3389/fmicb.2012.00225.
71. DIN 38412-30:1989-03. German standard methods for the examination of water, waste water and sludge; bio-assays (group l); determining the tolerance of daphnia to the toxicity of waste water by way of a dilution series (L 30).
72. Witt U., Einig T., Yamamoto M., Deckwer W.-D., Muller R.-J. Biodegradation of aliphatic–aromatic copolyesters:evaluation of thefinal biodegradability and ecotoxicologicalimpact of degradation intermediates. Chemosphere, 2001, 44, no. 2: 289– 299. https://doi.org/10.1016/S0045-6535(00)00162-4.
73. Tuominen J., Kylma J., Kapanen A., Venelampi O., Itävaara M., Sappäla J. Biodegradation of Lactic Acid Based Polymers under Controlled Composting Conditions and Evaluation of the Ecotoxicological Impact. Biomacromolecules, 2002, 3, no. 3: 445–455. http:/doi.org/10.1021/bm0101522.
74. Lannalainen J., Juvonen R.I., Vaajasaari K., Karp M. A new flash method for measuring the toxicity of solid and colored samples.Chemosphere, 1999, 38, no. 5: 1069–1083. https://doi.org/10.1016/S0045-6535(98)00352-X.
75. Salehpour S., Jonoobi M., Ahmadzadeh M., Siracuza V., Rafieian F., Oksman K. Biodegradation and ecotoxicological impact of cellulosenanocomposites in municipal solid waste composting. International journal of Biological Macromolecules, 2018, 111: 264–270. https://doi.org/10.1016/j.ijbiomac.2018.01.027.
76. Souza P.M.S., Sommag M gioL.R.D., Marin-Morales M.A., Morales A.R. PBAT biodegradable mulch films: Study of ecotoxicologicalimpacts using Allium cepa, Lactuca sativaand HepG2/C3A cell culture. Chemosphere, 2020, 256: 126985. https://doi.org/10.1016/j.chemosphere.2020.126985.
77. Calmon A., Guillaume S., Bellon-Maurel V., Feuilloley O., Silvestre F. Evaluation of Material Biodegradability in Real Conditions-Development of a Burial Test and an Analysis Methodology Based on Numerical Vision. J. of EnvironmentalPolymer Degradation, 1999, 7: 157–166. https://doi.org/10.1023/A:1022849706383.
78. Gautam N., Kaur I. Soil burial biodegradation studies of starch grafted polyethylene andpolyethylene and identification of Rhizobium meliloti therefrom. J. Environmental Chem. and Ecotoxicology, 2013, 5, no.6: 147–158.
79. Siakeng R., Jawaid M., Asim M., Siengchin S. Accelerated weathering and soil Burial effect on biodegradability, color and texture of coir/pineapple leaf fibres/ PLA biocomposites. Polymers, 2020, 12: 458–470. https://doi.org/10.3390/polym12020458.
80. Pekhtashova Ye.M. Biopovrezhdeniya i zashchita neprodovol’stvennykh tovarov [Biodamage and protection of non-food products]. Masterstvo, Moskva, 2002: 224.
81. GOST 9.053-75. Materialy nemetallicheskiye i izdeliya s ikh primeneniyem. Metod ispytaniya na mikrobologicheskuyu stoykost’ v prirodnykh usloviyakh v atmosphere [Non-metallic materials and products with their use. Test method for microbological resistance in natural conditions in the atmosphere].