2022 (1) 6

https://doi.org/10.15407/polymerj.44.01.068

PYROLYTIC MASS-SPECTROMETRY OF THE OLIGOISOPRENE WITH OF TERMINAL HYDROXYL GROUPS

V.P. Boiko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: boikovital41@i.ua

ORCID: 0000-0002-0157-6664

V.K. Grishchenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
e-mail: oligomer8@gmail.com

ORCID: 0000-0002-4951-936X

T.V. Dmitrieva,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0002-3526-8395

V.I. Bortnytskiy,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,
ORCID: 0000-0003-4954-6533

Polym. J., 2022, 44, no. 1: 68-75.

 

Section: Polymer synthesis.

 

Language: Ukrainian.

 

Abstract:

Pyrolytic mass spectrometry was used to evaluate the effect of terminal hydroxyl groups on the composition of thermal degradation products of oligoisoprene obtained using hydrogen peroxide as an initiator in the isopropyl alcohol solution. To interpret the mass spectra of the oligomer, the mass spectra of some low molecular weight alcohols were used. Oxygen-containing groups were found in the mass spectrum of the oligomer, confirming the presence of two types of hydroxyl groups. Peak m/z = 85 corresponds to the fragment from the terminal unit of isoprene directly connected with the primary hydroxyl group, and peak m/z = 127 does the same unit with the terminal fragment of isopropyl alcohol with the tertiary hydroxyl group. This conclusion is confirmed by the presence of peaks resulting from the transformations of the end groups of atoms in the oligomer, which are modeled by the corresponding low molecular weight alcohols.

Keywords: liquid rubbers, hydroxyl groups, hydrogen peroxide, isopropyl alcohol, thermal degradation products.

References

1. Rufino S.K., da Siulva G., Iha K. An Overview of the Technological Progress in Propellants Using Hydroxyl-Terminated Polybutadiene as Binder During 2002–2012. J. Aerosp. Technol. Manag. 2013. 5: 267–278. https://doi.org/10.5028/jatm.v5i3.242.
2. Pant Chandra Shekhar, Mada S. S. Santosh N. M. Mehilal. Synthesis of Azide-Functionalized Hydroxyl-Terminated Polybutadiene. J. Energetic Mater. 2016. 34, no. 4: 440–449. https://doi.org/10.1080/07370652.2015.1119915.
3. Boiko V.P., Grischenko V.K. Peroksid vodoroda v himii kauchuka. Hіm. prom. Ukraїni. 2011. no. 3: 65–79.
4. Boiko V.P., Grischenko V.K., Ostapyuk S.M., Kozlova G.A., Gruzevich A.B. Issledovanie kinetiki reakcii uretanoobrazovaniya oligoizoprenov radikal’noi polimerizacii, iniciirovannoi peroksidom vodoroda v rastvorah butilovyh spirtov. Polіm. jurnal. 2013. 35, no. 3: 272–277.
5. Boiko V.P., Grischenko V.K., Lobok S.I., Kozlova G.A., Gruzevich A.B. Fizicheskie svoistva jidkih oligoizoprenov ORD. XIII Ukraїns’ka konferencіya z visokomolekulyarnih spoluk. Kyiv, 7–10 jovtnya 2013: 376–378.
6. Grischenko V.K., Spirin Yu.L. Oligomerizaciya izoprena v organicheskih rastvoritelyah, iniciirovannaya perekis’yu vodoroda i gidroperekis’yu kumola. Vysokomolek. soedin. Ser. A. 1969. 11, no. 5: 980–988.
7. Grishchenko V., Barantsova A., Boiko V., Busko N. In: Advances in progressive thermoplastic and thermosetting polymers, perspectives and applications. Chapter 4. Polymeric Materials on the Base of Oligomers with Terminal Functional Groups. Ed. Ye. Mamunya, M. Iurzhenko. Iasi. Tehnopress. 2012: 424 p.
8. Polyakova A.A., Hmel’nickii R.A. Mass-spektrometriya v organicheskoi himii. L. Himiya. 1972: 365.
9. Tutorskii I.A., Bukanova E.F., Sherstneva L.F., Loskutova I.B. Gidroksilirovanie stirol-dienovyh trehblochnyh sopolimerov v rastvore i na poverhnosti. Vysokomol. soed. Ser. A. 1983. 25, no. 2: 418–422. https://doi.org/10.1016/0032-3950(83)90230-7.
10. Chien J.C.W., Kiang J.K.Y. Polymer reactions. X. Thermal Pyrolysis of Polyisoprene. Eur. Polym. J. 1979. 15, no.1: 1059–1065. https://doi.org/10.1016/0014-3057(79)90146-0.