2022 (2) 6
https://doi.org/10.15407/polymerj.44.02.137
STRUCTURE, MORPHOLOGY AND ANTIMICROBIEL PROPERTIES NANOCOMPOSITES BASED ON POLYELECTROLYTE COMPLEXE AND METALIC NANOPARTICLES ARGENTUM AND CUPRUM
Volodymyr Shtompel,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,
ORCID: 0000-0003-3437-0280
Valery Demchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,
ORCID: 0000-0001-9146-8984
Sergiy Ryabov,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shosse, Kyiv, 02160, Ukraine,
ORCID: 0000-0003-2996-3794
Polym. J., 2022, 44, no. 2: 137-144.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Using metods of x-ray diffraction (XRD), transmission electron microscopy (TEM) and antimocrobial properties with test-bacteriums E. coli and S. aureus vere investigated nanocomposites type polymer-metal based on stoichiometric polyelectrolyte complexe (PEC) and metalic nanoparticles argentum and cuprum. Samples PEC with amorphous structure vere formated based on polyelectrolytes natural parentage: Na-carboxymethyl cellulose and β-cyclodextrin that functionalyzed amino grups. Using sorbtion by samples PEC of ions salts AgNO3 and CuSO4 , that losung in water (concentration 0,1 mole/l) vere formated samples of triples polyelectrolyte-metalic coplexes (TPMC). By using method XRD showed existence in volyme TPMC of areas (with amorphous strucrure) of fragmented macromoleculare coils of PEC (macroligande) that co-ordinated as cations Сu2+, so cations Ag+. In result of chemical reduced (using salt NaBH4) this cations transition metalі in volum TPMC, vere formed polymer– metalic nanocomposites with metal nanoparticles argentum and cuprum, what shown using metod XRD. By using metod TEM vere installed, what in nanocomposites metalic nanoparticles cuprum whose middle size 12,4 nm, whereas nanoparticles argentum – 4,3 nm. Antimicrobial tests polymer-metal nanocomposites shown, that antimicrobial properties possess nanoparticles argentum and cuprum.
Keywords: polyelectrolyte complex, carboxymethyl cellulose, functionalised β-cyclodextrin, cations metal, nanocomposites, metal nanoparticles, antimicrobial properties.
REFERENCES
1. Bekturov E.A., Bimendina L.A. Interpolimernyie kompleksyi. Alma-Ata: Nauka, 1977: 264.
2. Dragan S., Cristea M. Polyelectrolyte complexes. IV. Interpolyelectrolyte complexes between some polycations with N,N-dimethyl-2-hydroxypropyleneammonium chloride units and poly(sodium styrenesulfonate) in dilute aqueous solution. Polymer, 2002, 43: 55–62. https://doi.org/10.1016/S0032-3861(01)00598-5.
3. Kabanov V.A. Polielektrolitnyie kompleksyi v rastvore i v kondensirovannoy faze. Uspehi himii, 2005, 74: 5–23.
4. Lee J. Popov Yu.O., Fredrickson G.H. Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation. J. Chem. Phys, 2008, 128: 4908–4921. https://doi.org/10.1063/1.2936834.
5. Kabanov A.V., Kabanov V.A. Interpolielektrolitnyie kompleksyi nukleinovyih kislot kak sredstvo dostavki geneticheskogo materiala v kletku. Vyisokomolekulyar. soed. Ser. A-B, 1994, 36: 198–211.
6. Kabanov V.A., Zezin A.B., Kasankin V.A., Yaroslavov A.A., Topchiev D.A. Polielektrolityi v reshenii ekologicheskih zadach. Uspehi himii, 1991, 60: 595–601. https://doi.org/10.1070/RC1991v060n03ABEH001063.
7. Zhao Q., Qian J.W., An Q.F. et al. A faciel route for fabricating novel polyelectrolyte complex membrane with high pervaporation performance in isopropanol dehydration. J. Membr. Sci, 2008, 320: 8–12. https://doi.org/10.1016/j.memsci.2008.04.040.
8. Dinu I.A. Mihai M., Dragan E.S. Comparative study on the fomation and flocculation properties of polyelectrolyte complex dispersions based on synthetic and natural polycations. Chem. Eng. J, 2010, 160: 115–121. https://doi.org/10.1016/j.cej.2010.03.018.
9. Zezin A.B., Rogacheva V.B., Valueva S.P., Nikonorova N.I., Zezin A.A. From triple interpolyelectrolyte-metal complexes to nanocomposite polymer-metall // Russian thechnology, 2006, 1: 191–200.
10. Demchenko V.L., Shtompel’ V.I. Structuring, morphology and thermomechanical properties of nanocomposites formed from ternary polyelectrolyte-metal complexes based on pectin, polyethyleneimine, and CuSO4. Polymer Sci. Part B, 2014, 56: 927–934. https://doi.org/10.1134/S1560090414060049.
11. Zezin A.B. Rogacheva V.B., Felgman V.I., Afanasiev P., Zezin A.A. From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Adv. Coll. Interface Sci, 2010, 158: 84–93. https://doi.org/10.1016/j.cis.2009.09.002.
12. Shtompel V.I. Osoblyvosti mikrofazovoi struktury i vlastyvosti modyfikovanykh uretanovmisnykh polimeriv. Avtoref. dys. dokt. khim. nauk (02.00.06). Kyiv (IKhVS NAN Ukrainy), 2003: 36.
13. Shtompel V.I., Kercha Yu.Yu. Struktura lineynyih poliuretanov. Kiev: Nauk. dumka, 2008: 248.
14. Zezin A.A., Felgman V.I., Abramchuk S.S., Ivanchenko V.K.,. Zezina E.A, Shmakova N.A., Shvedunov V.I. Formation of metal-polymer hybrid nanostructure during radiation–induced reduction of metal ions in poly(acrylic acid)-poly(ethyleneimine) complexes. Polymer Sci. Ser.C, 2011, 6: 53–61. https://doi.org/10.1134/S1811238211060038.
15. Demchenko V., Riabov S., Rybalchenko N., Goncharenko L., Kobylinskyi S., Shtompel’ V. X-ray study of structural formation, thermomechanical and antimicrobial properties of copper-containing polymer nanocomposites obtained by the thermal reduction method. Eur. Polym. J. 2017, 96: 326–336. https://doi.org/10.1016/j.eurpolymj.2017.08.057.
16. Mirkin L.I. Rentgenostrukturnyiy analiz. Spravochnoe rukovodstvo. Poluchenie i izmerenie rentgenogramm. M.: Nauka, 1976: 327.