2022 (3) 5
https://doi.org/10.15407/polymerj.44.03.214
SYNTHESIS AND PROPERTIES OF CROSS-LINKED HYDROGELS BASED ON CHITOSAN AND POLYACRYLAMIDE
О.М. NADTOKA,
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine
e-mail: oksananadtoka@ukr.net
P.А. VIRYCH,
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine
e-mail: sphaenodon@ukr.net
N.V. KUTSEVOL,
Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine
e-mail: kutsevol@ukr.net
Polym. J., 2022, 44, no. 3: 214-221.
Section: Polymer synthesis.
Language: Ukrainian.
Abstract:
The synthesis and physico-chemical properties of chemically cross-linked hydrogels based on polyacrylamide and chitosan, which form interpenetrating polymer networks, are considered in the work. The strategy of obtaining cross-linked networks of both polyacrylamide and polyacrylamide grafted on chitosan by radical polymerization was used. The equilibrium swelling properties, which depend on the pH value of the solution and the composition of the gels, were studied. The chemical structure of the obtained hydrogels was characterized by IR spectroscopy.
Key words: chemically cross-linked hydrogels, interpenetrating polymer networks, chitosan.
REFERENCES
1. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2002, 43: 3–12. https://doi.org/10.1016/S0169-409X(01)00239-3.
2. Peppas N.A., Bures P., Leobandung W., Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm., 2000, 50: 27–46. https://doi.org/10.1016/S0939-6411(00)00090-4.
3. Myung D., Waters D., Wiseman M., Duhamel P.E., Noolandi J., Ta C.N., Frank C. W. Progress in the development of interpenetrating polymer network hydrogels. Polym. Adv. Technol., 2008, 19: 647–657. https://doi.org/10.1002/pat.1134.
4. Ignat L., Stanciu A. Advanced polymers: interpenetrating polymer networks. In Handbook of Polymer Blends and Composites. Ed.: A. K. Kulshreshtha and C. Vasile, Rapra Technology, 2003: 275–280.
5. Wang J.J., Liu F. Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation. Polym. Bull., 2013, 70: 1415–1430. https://doi.org/10.1007/s00289-013-0934-z.
6. Chivukula P., Dušek K., Wang D., Duškova-Smrcˇkova M., Kopecˇkova P., Kopecˇek J. Synthesis and characterization of novel aromatic azo bond-containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials, 2006, 27: 1140–1151. https://doi.org/10.1016/j.biomaterials.2005.07.020.
7. Hoare T.R., Kohane D.S. Hydrogels in drug delivery: progress and challenges. Polymer, 2008, 49: 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.
8. Pillai C.K.S., Paul W., Sharma C.P .Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34, no. 7: 641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001.
9. Crini G., Badot P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batchstudies: a review of recent literature. Prog. Polym. Sci., 2008, 33: 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
10. Wan Ngah W.S., Teong L.C., Hanafiah M.A.K.M. Adsorption of dyes and heavy metals by chitosan composites: a review. Carbohydr. Polym., 2011, 83: 1446–1456. https://doi.org/10.1016/j.carbpol.2010.11.004.
11. Cai Z., Kim J. Cellulose–chitosan interpenetrating polymer network for electro-active paper actuator. J. Appl. Polym. Sci., 2009, 114: 288–297. https://doi.org/10.1002/app.30456.
12. Rokhade A.P., Patil S.A., Aminabhavi T.M. Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr. Polym., 2007, 67: 605–613. https://doi.org/10.1016/j.carbpol.2006.07.001.
13. Hoare T., Kohane D. Hydrogels in drug delivery: progress and challenges. Polymer, 2008, 49, no. 8: 1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.
14. Bonina P., Petrova Ts., Manolova N. pH-sensitive hydrogels composed of chitosan and polyacrylamide – preparation and properties. J. Bioact. Compat. Polym., 2004, 19: 101–116. https://doi.org/10.1177/0883911504042642.
15. Alvarez-Lorenzo C., Concheiro A., Dubovik A.S., Grinberg N.V., Burova T.V., Grinberg V.Y. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J. Control. Release, 2005, 102: 629–641. https://doi.org/10.1016/j.jconrel.2004.10.021.
16. Ramesh Babu V., Hosamani K.M., Aminabhavi T.M. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr. Polym., 2008, 71: 208–217. https://doi.org/10.1016/j.carbpol.2007.05.039.
17. Ha Y.A., Lee E.M., Ji B.C. Mechanical properties of semi-interpenetrating polymer network hydrogels based on poly(2-hydroxyethyl methacrylate) copolymer and chitosan. Fibers. Polym., 2008, 9: 393–399. https://doi.org/10.1007/s12221-008-0063-8.
18. Nadtoka O., Virych P., Kutsevol N. Synthesis and absorption properties of hybrid polyacrylamide hydrogels. Mol. Cryst. Liq. Cryst., 2021, 719, no. 1: 84–93. https://doi.org/10.1080/15421406.2020.1862464.
19. Saber-Samandari S., Gazi M., Yilmaz E. UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym. Bull., 2012, 68: 1623–1639. https://doi.org/10.1007/s00289-011-0643-4.
20. Yazdani-Pedram M., Retuert J., Quijada R. Hydrogels based on modified chitosan, Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol. Chem. Phys. 2000, 201: 923–930. https://doi.org/10.1002/1521-3935(20000601)201:9<923::AID-MACP923>3.0.CO;2-W.
21. Nadtoka O., Virych P., Kutsevol N. Investigation of Swelling Behavior of PAA and D-PAA Hydrogels. Springer Proceedings in Physics, 2020, 247: 47–60. https://doi.org/10.1007/978-3-030-52268-1_4.
Received 04.07.2022