2022 (3) 7
https://doi.org/10.15407/polymerj.44.03.231
SYNTHESIS AND RESEARCH OF THE NEW POLYURETHANE UREAS THAT CONTAINE 1,8-DIAMINO-3,6-DIOXAOCTANE AS EXTENDER OF MACROCHAINE
S.O. PRYMUSHKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: politoks@merlin.net.ua
ORCID: 0000-0002-3623-1068
N.A. GALATENKO,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: galatenkonataliia@gmail.com
ORCID: 0000-0002-5961-5750
R.A. ROZHNOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: rozhnovarita@gmail.com
ORCID: 0000-0003-3284-3435
G.A. KOZLOVA,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: politoks@merlin.net.ua
ORCID: 0000-0001-8114-4812
I.I. GLADYR,
Institute of Macromolecular Chemistry NAS of Ukraine, 48 Kharkivske shose, Kyiv, 02155, Ukraine
e-mail: politoks@merlin.net.ua
ORCID: 0000-0002-6248-2709
Polym. J., 2022, 44, no. 3: 231-238.
Section: Medical polymers.
Language: Ukrainian.
Abstract:
A number of polyurethane ureas (PUUs) containing 1,8-diamino-3,6-dioxooctane (DOODA) in their structure as a macrochain extender were synthesized with a different molar ratio of 4,4′-diaminodiphenylmethane (DADPh) to DOODA as 30:70; 50:50; 70:30. Synthesized polymers are elastic, transparent films with a thickness of 0.3 mm. According to the results of physical and mechanical tests, the tensile strength of the synthesized PUUs is in the range of (0.7-2.0) MPa, and the relative elongation at break is in the range of (73.9-584.7)%. The best physical and mechanical characteristics have the polymer synthesized with a ratio of DADPh:DOODA as 0.3:0.7 with a tensile strength of 2.0 MPa and a relative elongation of 522%. The formation of PUUs was confirmed by the method of IR-spectroscopy. Thermophysical properties synthesized by DSC, TGA methods were studied. It was established that the glass transition temperature (Tg) in a number of synthesized PUUs with DOODA is in the range from (minus) 18.50 °C to (minus) 34.52 °C. An increase in the content of 1,8-Diamino-3,6-dioxaoctane in the PUUs structure leads to a decrease in Tg and a slight increase in ΔCp during the second heating. According to the TGA, the heat resistance characteristics of the synthesized PUUs depend on the content of DOODA. When entering the structure of the PUUs DOODA, a decrease of the temperature of the start of the decomposition (T0) and the temperature of the maximal speed of the decomposition (Tmax), which is non-linear nature. T0 of the synthesized PUUs is in the range (275.16-289.8)°C and is accompanied by a slight loss of mass (0.007-0.093)%. Synthesized PUUs are heat-resistant to a temperature of 275.16 °C, which makes it possible to carry out dry sterilization of samples without changing their characteristics. Synthesized PUUs are promising materials for the immobilization of medicinal substances for further use in medicine.
Key words: polyurethane, polyurethane urea, 1,8-Diamino-3,6-dioxaoctane, 4,4′- diaminodiphenylmethane.
REFERENCES
1. Bae Y., Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers, Adv. Drug Deliv. Rev., 2009, 61: 768–784. https://doi.org/10.1016/j.addr.2009.04.016.
2. Yanchao W., Ruichao L., Jingiing L., Jinlin Ch. et al. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. J. Mater. Chem. B, 2021, 38, no. 9: 7979–7990. doi:10.1039/D1TB01236C.
3. Tetteh G., Khan A.S., Delaine-Smith R.M., Reilly G.C., Rehman O.U. Electrospun polyurethane/hydroxyapatitre bioactive Scaffords for bone tissue engineering: The role oddolventandhydroxyapatite particles. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39: 95–110. https://doi.org/10.1016/j.jmbbm.2014.06.019.
4. Galatenko N., Rozhnova R. Biologically active polymeric materials for medicine. Naukova
dumka, Kyiv 2013.
5. Rozhnova, R.A., Bondarchuk V.I., Savitskaia E.S., Levenets E.G., Popov V.A., Galatenko N.A. Replacement of bone defects with a polyurethane composition with hydroxyapatite high-filling. Likars’ ka Sprava, 2002, 1, no.1: 107–110.
6. Gogolevski S., Pennings A.J. An artificial skin based on biodegradable mixturesof polylactides and polyurethanes for full thickness skin wound covering. Makromol. Chem. Rapid. Commun., 1983, 4: 675–680. https://doi.org/10.1002/marc.1983.030041008.
7. Kucinska-Lipka J., Gubanska I., Pokrywczynska M., Cieslinski H., Filipowicz N., Cieslinski H., Filipowicz N., Drewa T., Janik H. Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications. J. Polymer Bulletin, 2018, 75: 1957–1979. doi: 10.1007/s00289-017-2124-x.
8. Fathi-Karkan S., Banimohamad-Shotorbani B., Saghati S., Rahbarghazi R., Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. Journal of Biological Engineering, 2022, 16, no. 6. https://doi.org/10.1186/s13036-022-00286-9.
9. Teo A.J.T., Mishra A., Park I., Kim Y.-J., Park W.-T., Yoon Y.-J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng., 2016, 4, no. 2: 454–472, https://doi.org/10.1021/acsbiomaterials.5b00429.
10. Karpenko O.S., Kiseleva T.O., Galatenko N.A. Synthesis of new polyurethaneureas with decametoxine containing fragments of copolymers of N-vinyl pyrrolidone with vinyl alcohol. Reports of the National Academy of Science of Ukraine, 2014, no. 9: 92–96. doi:10.15407/dopovidi2014.09.092.
11. Rozhnova R., Karpenko O., Rudenchyk T., Galatenko N., Kiselova T. Synthesis film materials with decametoxine on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol. Naukovi zapysky NaUKMa, 2016, 183: 54–59. http://ekmair.ukma.edu.ua/handle/123456789/9389, in Ukrainian.
12. Stashenko K. V., Rudenchyk T. V., Rozhnova R. A., Galatenko N. A., Narazhaiko L. F. Biocompatible composites with lysozyme based on. Polyurethane urea with N-vinyl pyrrolidone copolymer fragments, vinyl acetate and vinyl alcohol. Visn. Odes. nac. univ., Chem. 2018, 23, no. 2: 46–56. https://doi.org/10.18524/2304-0947.2018.2(66).132042, in Ukrainian. https://doi.org/10.18524/2304-0947.2018.2(66).132042.
13. Vislohuzova T.V., Kuliesh D.V., Rozhnova R.A., Halatenko N.A., Narazhaiko L.F. Vyvchennia biosumisnosti kompozytsiinykh materialiv napovnenykh sriblovmisnymy kremnezemnymy nanokompozytamy dlia medytsyny. Visnyk problem biolohii i medytsyny. 2022, 164 (додаток), 2: 12–13. doi:10.29254/2077-4214-2022-2-164/addition-12-13, in Ukranian. https://doi.org/10.29254/2077-4214-2022-2-164/addition-12-13.
14. Bogatyrov V.M., Gun’ko V.M., Galaburda M.V., Oranska O.I., Petryk I.S., Tsyganenko K.S., et al. The effect of photoactivated transformations of Ag+ and Ag0 in silica fillers on their biocidal activity. Research on Chemical Intermediates. 2019, 45, no. 8: 3985–4001. https://doi. org/10.1007/s11164-019-03885-2.
15.Vislohuzova T.V., Rozhnova R.A., Bogatyrov V.M. Film materials filled with biocidal silver-containing silica nanocomposites. Abstract of Ukrainian Conference with International Participation Chemistry, physics and technology of surface; 2020 Oct 21-23; Kyiv; 2020: 190.
16. Vislohuzova T., Rozhnova R., Galatenko N., Narazhayko L, Rudenko A. Study of biodegradation, biocompatibility and bactericidal activity of film materials with tiamulin fumarate based on polyurethane urea. Chemistry & Chemical Technology, 2020, 14, no: 3: 318–326. doi.org/10.23939/chcht14.03.318
17. Zi Wang, Zhongyu Hou, Yanfang Wang. Fluorinated waterborne shape memory polyurethane urea for potential medical implant application. Journal of Applied Polymer Science, 2013, 127, no. 1: 710–716. https://doi.org/10.1002/app.37862.
18. Razumovskyi L.P., Razumova L.L., Veretennykova A.A., Pestova M.B., Yordanskyi A.L.
Domain structure of segmented polyurethane brand Vitur T-0533. Polymer Science, 1991, Series A, 33, no. 3: 632)–637. https://doi.org/10.1016/0032-3950(91)90258-R.
19. Shundrina I.K., Oleinik I.V., Pastukhov V.I., Shundrin L.A., Chernonosova V.S., Laktionov P.P. Synthesis of urethane-type polymers with polydimethylsiloxane blocks for the manufacture of fibrous matrices by electrospinning. Polymer Science, 2020, Series B, 62, no. 4: 385–393. https://doi.org/10.1134/S1560090420040090.
20. Cheng Y., Yu S., Zhen X., Wang X., Wu W., Jiang X. Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces. 2012, 4, no. 10: 5325–32. doi: 10.1021/am3012627.
21. Sahu S.K., Mallick S.K., Santra S., Maiti T.K., Ghosh S.K., Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J. Mater Sci Mater Med. 2010, 21, no. 5: 1587–1597. doi: 10.1007/s10856-010-3998-4.
Received 04.07.2022