2023 (1) 7

https://doi.org/10.15407/polymerj.45.01.079

STRUCTURE AND MORPHOLOGY NANOCOMPOSITES BASED ON STOICHIOMETRIC POLYELECTROLYTE COMPLEXE AND METALIC NANOPARTICLES SILVER AND COPPER

Volodymyr Shtompel’,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID 0000-0003-3437-0280
Sergiy Sinelnikov,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0003-0746-9146
Sergiy Kobylinskyi,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0002-4915-2502
Sergiy Riabov,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID:  0000-0003-2996-3794
Polym. J., 2023, 45, no. 1: 79-86.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

Using XRD and TEM methods structure and morphogy of nanocomposites type polymer-metal based on stoichiometric polyelectrolyte complexe (chitosan-chloride and Na-phosphate of starch – starch of milk maize that Na-threepolyphospate functionalised) and metalic nanoparticles of silver and copper vere investigated. Using FTIR-spectroscopy phosphate of starch vere identificated. Nanocomposites vere formated two methods: thermo-chemical reduced of Ag+ i Cu2+ cations (by 150 °C and 170 °C accordingly) and Cu2+ cations reduced by method green synthesis (using extracte green tea) to metalic state. Show, that in volyme of nanocomposites the metalic nanopaticles silver and copper, what acquired thermo-chemicel method, have average size 5,0 nm and 3,5 nm accordingly, whereas nanoparticles copper, what acquired by method green synthesis, have average size 12,0 nm. Little size of metalic nanoparticles copper which obtaining by thermo-chemical method in contrast to nanoparticles copper which obtained by method green synthesis, caused by action of high temperature.

Key words: polyelectrolyte complex, chitosan, starch, silver, copper, cations metal, nanoparticles, x-ray diffraction, morphology.

REFERENCES
1. Zezin A.B., V.B. Rogacheva, Felgman V.I., Afanasiev P., Zezin A.A. From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Adv. Coll. Interface Sci. 2010. 158, nо. 1–2: 84–93. https://doi.org/10.1016/j.cis.2009.09.002.
2. Demchenko V.L., Shtompel’ V.I. Structuring, morphology and thermomechanical properties of nanocomposites formed from ternary polyelectrolyte-metal complexes based on pectin, polyethyleneimine and CuSO4. Polym. Sci. Ser. B, 2014. 56, nо. 6: 927–934. https://doi.org/10.1134/S1560090414060049.
3. Zezin A.A., Klimov D.I., Zezina E.A., Mkrtchyan K.V., Feldman V.I. Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: Principles, prospects and implications. Radiat. Phys.Chem. 2020. 169: 108076–108082. https://doi.org/10.1016/j.radphyschem.2018.11.030.
4. Thomas A.A., Varghese R. M., Rajeshkumar S. Green Synthesis of Copper Nanoparticles using Green Tea and Neem Formulation and Assessment if its Antimicrobial Effects. Indian J. Forens. Med. Toxicol. 2022. 16, nо. 4: 119–124. https://doi.org/10.37506/ijfmt.v16i4.18550.
5. Albeladi Sh. Sh. R., Malik M. A., Al-thabaiti Sh. A. Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J. Mater. Res. Technol. 2020. 9, nо. 5: 10031–10044. https://doi.org/10.1016/j.jmrt.2020.06.074.
6. Ying S., Guan Z., Ofoegbu P.C., Clubb P., Rico C., He F., Hong J. Green synthesis of nanoparticles: Current developments and limitations /S. Ying, Environ. Technol. Innov. 2022. 26, nо. 10: 102336–102344. https://doi.org/10.1016/j.eti.2022.102336.
7. Shtompel V.І., Demchenko V.L., Riabov S.V. Structure, morphology and antimicrobiel properties of nanocomposites based on polyelectrolyte complex and metalic nanoparticles silver and cooper. Ukr. Polym. J. 2022. 44, nо. 2: 51–57. https://doi.org/10.15407/polymerj.44.02.137.
8. Shtompel V.I. Peculiarity of microfase struktury and properties of modyfication urethane containing polymers. Author’s abst. doct. sci. chemistry (02.00.06). Kyiv (IMC NAS Ukraine), 2003: 36.
9. Shtompel V.I., Kercha Yu.Yu. Structure of lineare polyurethans, Кyiv: Science thought, 2008: 248.
10. Nieto-Maldonado A., Bustos-Guadarrama A.S., Espinoza-Gomes H., Flores-López L. Z., Ramirez-Acosta K., Alonso-Nuñez dG., Cadena-Nava R.D. Green synthesis of copper nanoparticles using different plant extracts and their antibacterial activity. J. Environm. Chem. Eng. 2022. 10, nо. 2: 107130–107138. https://doi.org/10.1016/j.jece.2022.107130.