2023 (3) 2

https://doi.org/10.15407/polymerj.45.03.195

NANOCOMPOSITES BASED ON ACRYLIC OLIGOMERS AND MODIFIED MONTMORILLONITE

К.G. Gusakova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
e-mail: lexgon@ukr.net
ORCID: 0000-0001-8356-9283
Polym. J., 2023, 45, no. 3: 195-203.

Section: Review.

Language: Ukrainian.

Abstract:

This comprehensive review encompasses a comprehensive analysis of nearly all established methodologies developed within the last 15-20 years to fabricate silicate/polymer nanocomposites based on acrylic oligomers and modified montmorillonite. The review thoroughly examines the diverse strategies employed to create these specific nanocomposites, categorizing them according to the distinct methods employed for mineral modification. The review systematically investigates three principal avenues of layered silicate modification. The first avenue involves the utilization of montmorillonite which has been modified with alkylammonium surfactants, shedding light on the intricacies and outcomes associated with this approach. The second avenue focuses on montmorillonite modification achieved through photopolymerization initiators, exploring the nuances and advancements within this context. The third avenue delves into the functionalization of montmorillonite with reactive groups, offering a comprehensive evaluation of this avenue’s potential and limitations. Each direction is dissected in terms of its distinctive advantages and drawbacks, contributing to a thorough understanding of the factors influencing the choice of a particular approach. This multidimensional exploration allows for a well-informed consideration of the most suitable method for a given application. By presenting a holistic perspective on the various methodologies, advantages, and challenges, the review aids in enhancing the collective understanding of this specialized area and promoting further advancements in the development of innovative silicate/polymer nanocomposites. This review also encompasses a comprehensive exploration of fundamental techniques instrumental in studying these intricate materials. The review also includes a number of basic methods used to study polymer/silicate nanocomposites. The main ones are small-angle X-ray scattering SAXS, X-ray diffraction XRD, transmission electron microscopy TEM, Scanning electron microscopy SEM, Dynamic mechanical analysis DMA and Dynamic mechanical thermal analysis DMTA. By illuminating the investigative tools used to unveil the structural and mechanical intricacies of these materials, the review empowers researchers to make informed decisions, advance their research, and contribute to the continued evolution of nanocomposite science.

Key words: acrylic oligomers, organic modifiers, montmorillonite, nanocomposite.

REFERENCES

1. Berlin A.A., Korolev G.V., Kefeli T.Ya., Sivergin Yu.M. Akrilovyie oligomeryi i materialyi na ih osnove: M. 1983: Himiya s. 232.
2. Yanchao F., Honggang S., Cuizhi Z., Xiaomeng C., Shaojie L., Xuteng X., Erjun T. Fabrication of UV-induced peelable adhesives using acrylic copolymers containing photo-initiators and soybean oil based urethane acrylate oligomers. Intern. J. of Adhesion and Adhesives. 2023, 126: 103476 https://doi.org/10.1016/j.ijadhadh.2023.103476.
3. Pengsong L., Zhuangzhuang C., Yanwu C., Teng Y., Zhuohong Y.. One-pot and solvent-free synthesis of castor oil-based polyurethane acrylate oligomers for UV-curable coatings applications. Prog. in Org. Coat. 2021, 159, 106398 https://doi.org/10.1016/j.porgcoat.2021.106398.
4. Panpan H., Ting Z., Lili W., Shaojie L., Erjun T., Xiaodong X. IPN structured UV-induced peelable adhesive tape prepared by isocyanate terminated urethane oligomer crosslinked acrylic copolymer and photo-crosslinkable trifunctional acrylic monomer. Prog. in Org. Coat. 2019, 137, 105281 https://doi.org/10.1016/j.porgcoat.2019.105281.
5. Kraśkiewicz A., Kowalczyk A., Kowalczyk K., Schmidt B.. Novel solvent-free UV-photocurable varnish coatings based on acrylic telomers – Synthesis and properties. Prog. in Org. Coat. 2023, 175, 107365 https://doi.org/10.1016/j.porgcoat.2022.107365.
6. Bingyan S., Huimin W., Yanchao F., Xiaomeng C., Shaojie L., Song Z., Minzhong Z. Fully cross-linked UV-induced peelable acrylic PSA prepared from a dual curable castor oil based urethane acrylate oligomer for wafer dicing. Prog. in Org. Coat. 2022, 163, 106680 https://doi.org/10.1016/j.porgcoat.2021.106680.
7. Kunal W. and Anagha S. Synthesis and Characterization of UV Oligomer based on Cardanol. J. of Ren. Mater. 2020, 8: 57–68. https://doi.org/10.32604/jrm.2020.07773.
8. Jianbing W., Ruofei Z., Ping L., Guozhang M., Caiying H. Synthesis of fluorinated polyacrylic acrylate oligomer for the UV-curable coatings. J. of Coat. Techn. and Res. 2019, 16: 681–688 https://doi.org/10.1007/s11998-018-0145-5.
9. Jong-Ho B., Dooyoung B. at all. Optimization of Recovery and Relaxation of Acrylic Pressure-Sensitive Adhesives by Using UV Patterning for Flexible Displays. Ind. Eng. Chem. Res. 2019, 58: 4331–4340 https://doi.org/10.1021/acs.iecr.8b05208.
10. Mo-Beom Y., Tae-Hyung L., Gi-Yeon H. at all. Movable Cross-linking in Adhesives: Superior Stretching and Adhesion Properties via a Supramolecular Sliding Effect. Appl. Pol. Mat. 2021, 3 (5) : 2678–2686. https://doi.org/10.1021/acsapm.1c00240.
11. Jeonguk H., Daegyun L., Geonwoo L., Young E. K., at all. Ambient air-operated thermo-switchable adhesion of N -isopropylacrylamide-incorporated pressure sensitive adhesives. Mater. Hor. 2023, 10 (6) : 2013–2023. https://doi.org/10.1039/D3MH00419H.
12. Woong C. S., Jun H. P., Ho J. S.. Effect of silane acrylate on the surface properties, adhesive performance, and rheological behavior of acrylic pressure sensitive adhesives for flexible displays. J. of Indust. and Eng. Chem. 2022, 111: 98–110. https://doi.org/10.1016/j.jiec.2022.03.040.
13. Daegyun L., Myung-Jin B., Hak-Sun K. at all. Carboxyethyl acrylate incorporated optically clear adhesives with outstanding adhesion strength and immediate strain recoverability for stretchable electronics. Chem. Eng. Jour. 2022, 437, 135390. https://doi.org/10.1016/j.cej.2022.135390.
14. Woong C. S., Jong T. L., Ho J. S. Acrylic pressure-sensitive adhesives based on ethylene glycol acrylate for flexible display application: Highly elastic and recoverable properties. Polym. Test. 2022, 108, 107491. https://doi.org/10.1016/j.polymertesting.2022.107491.
15. Jung-H. L., Kyung-Min K., Hyun-Joong K., Youngdo K.. Ultraviolet-patterned acrylic pressure-sensitive adhesives for flexible displays. Polymer. 2021, 237, 124324. https://doi.org/10.1016/j.polymer.2021.124324.
16. Ji-Soo K., Hyun-Joong K., Yoong-Do K. Flexibility properties of pressure-sensitive adhesive with different pattern of crosslinking density for electronic displays. J. of Mater. Res. and Techn. 2021, 15: 1408–1415. https://doi.org/10.1016/j.jmrt.2021.08.145.
17. Jean-Pierre Fouassier, Jacques Lalevée. Photoinitiators in Various Sectors of Industrial Applications. 2021, 657–697. https://doi.org/10.1002/9783527821297.ch19.
18. Eun S. K., Jae H. L., Dong H. S., Woo J. C.. Influence of UV Polymerization Curing Conditions on Performance of Acrylic Pressure Sensitive Adhesives. Macromol. Res. 2021, 29 (2) : 129–139. https://doi.org/10.1007/s13233-021-9018-3.
19. Ju H. L., Jintae P., Min H. M., Myung-Jin B., Hak-Sun K., Dong W. L.. Stretchable and recoverable acrylate-based pressure sensitive adhesives with high adhesion performance, optical clarity, and metal corrosion resistance. Chem. Eng. Journ. 2021, 406, 126800. https://doi.org/10.1016/j.cej.2020.126800.
20. Ji-Soo K., Jin-Uk H., Dooyoung B. at all. Characterization and flexibility properties of UV LED cured acrylic pressure-sensitive adhesives for flexible displays. J. of Mater. Res. and Techn. 2021, 10 : 1176–1183. https://doi.org/10.1016/j.jmrt.2020.12.034.
21. Eun S. K., Da B. S., Kyoung H. C. at all. Robust and recoverable dual cross‐linking networks in pressure‐sensitive adhesives. J. of Polym. Science. 2020, 58 (23) : 3358–3369. https://doi.org/10.1002/pol.20200628.
22. Williams K., Ebdon J.R., and Kandola B.K. Intumescent fire-retardant coatings for plastics based on poly(vinylphosphonic acid): improving water resistance with comonomers. J. of Appl. Polym. Science. 2020, 137: 47601. https://doi.org/10.1002/app.47601.
23. He Y.N., Liu X.Y. and Yu Z.Q. Mechanical properties of UV-curable carbon fiber-reinforced polymer composite patch: repair evaluation of damaged aluminum alloy. Polym. for Adv. Techn. 2019, 30: 2034–2044. https://doi.org/10.1002/pat.4636.
24. Diaconu G., Mičušík M., Bonnefond M. at all. Macroinitiator and Macromonomer Modified Montmorillonite for the Synthesis of Acrylic/MMT Nanocomposite Latexes. Macromolecules. 2009, 42(9): 3316–3325 https://doi.org/10.1021/ma802467j.
25. Saharudin M.S. A review of recent developments in mechanical properties of polymer–clay nanocomposites. Berlin, Germany: Springer Science and Business Media Deutschland GmbH, 2020. https://doi.org/10.1007/978-981-15-5753-8_11.
26. Kausar A. Flame retardant potential of clay nanoparticles. In: Clay Nanoparticles. Amsterdam, Netherlands: Elsevier, 2020, pp. 169–184. https://doi.org/10.1016/B978-0-12-816783-0.00007-4.
27. Gill Y.Q., Abid U., Song M. High performance nylon12/clay nanocomposites for potential packaging applications. J. Appl. Polym. Sci. 2020; 137(41): 49247. https://doi.org/10.1002/app.49247.
28. Jianshuo L., Wei W., Huanbo H. at all. The synergism effect of montmorillonite on the intumescent flame retardant thermoplastic polyurethane composites prepared by selective laser sintering. Ins. Plast. Prof. 2022, 43: 5863–5876 https://doi.org/10.1002/pc.26621.
29. Murugesan S., Scheibel T. Copolymer/clay nanocomposites for biomedical applications. Adv. Funct. Mater. 2020; 30(17): 1908101. https://doi.org/10.1002/adfm.201908101.
30. Budash Yu., Rezanova N. and Rezanova V. Thermally and organomodified montmorillonite as effective regulators of the structure formation process in polypropylene/polystyrene blends. Polymers and Polymer Composites. 2022, 30: 1478–2391 https://doi.org/10.1177/09673911221093991.
31. Gorbacheva S.N., Yarmush Y.M., Ilyin S.O. Rheology and tribology of ester-based greases with microcrystalline cellulose and organomodified montmorillonite. Tribol. Intern.2020, 148: 106318 https://doi.org/10.1016/j.triboint.2020.106318.
32. Fang L., Yang L., Fang W., Yu-liang M., Dai-yuan L. Effect of Organo-Modified Montmorillonite on the Morphology and Properties of SEBS/TPU Nanocomposites. Polymer Engin. & Sci. 2020, 60(4): 850–859 https://doi.org/10.1002/pen.25344.
33. Gaurav Verma. Weathering, salt spray corrosion and mar resistance mechanism of clay (nano-platelet) reinforced polyurethane nanocomposite coatings. Prog. in Org. Coat. 2019, 129: 260–270 https://doi.org/10.1016/j.porgcoat.2019.01.028.
34 Belgaonkar M.S., Balasubramanian Kandasubramanian. Hyperbranched Polymer-based Nanocomposites: Synthesis, Progress, and Applications. Eur. Polym. Jour. 2021, 147: 110301 https://doi.org/10.1016/j.eurpolymj.2021.110301.
35. Martina Ussia, Giusy Curcuruto,Daniela Zampino. Role of Organo-Modifier and Metal Impurities of Commercial Nanoclays in the Photo- and Thermo-Oxidation of Polyamide 11 Nanocomposites. Polymers 2020, 12(5): 1034 https://doi.org/10.3390/polym12051034.
36. Gaurav Verma. Weathering, salt spray corrosion and mar resistance mechanism of clay (nano-platelet) reinforced polyurethane nanocomposite coatings. Progress in Organic Coatings. 2019, 129: 260–270 https://doi.org/10.1016/j.porgcoat.2019.01.028.
37. Dean K.M., Bateman S.A., Simons R. A comparative study of UV active silane-grafted and ion-exchanged organo-clay for application in photocurable urethane acrylate nano- and micro-composites. Polymer. 2007, 48: 2231–2240. https://doi.org/10.1016/j.polymer.2007.02.044.
38. Uhla F.M., Davulurib S.P., Wongb S-C., Webster D.C. Organically modified montmorillonites in UV curable urethane acrylate films. Polymer. 2004, 45: 6175–6187. https://doi.org/10.1016/j.polymer.2004.07.001.
39. Misraa N., Kumara V., Bahadurb J. at all. Layered silicate-polymer nanocomposite coatings via radiation curingprocess for flame retardant applications. Prog. in Org. Coat. 2014, 77: 1443–1451. https://doi.org/10.1016/j.porgcoat.2014.04.027.
40. Silva A.A., Soares B.G. Dahmouche K. Organoclay-epoxy nanocomposites modified with polyacrylates: The effect of the clay mineral dispersion method. Appl. Clay Sci. 2016, 124–125: 46–53. https://doi.org/10.1016/j.clay.2016.02.003.
41. Xiaohua Q., Ya W., Kemin W., Hailin T., Jun N. In-situ synthesis of exfoliated nanocomposites by photopolymerization using a novel montmorillonite-anchored initiator. Appl. Clay Sci. 2009, 45:133–138. https://doi.org/10.1016/j.clay.2009.04.014.
42. Hailin Tan, Jun Nie. Photopolymerization of Clay/Polyurethane Nanocomposites Induced by Intercalated Initiator. J. of Appl. Pol. Sci. 2007, 106: 2656–2660 https://doi.org/10.1002/app.26878.
43. Hailin T., Dongzhi Y., Jing H., Ming X., Jun N. Photopolymerization of clay/polyurethane nanocomposites induced by an intercalated photoinitiator through sol–gel modification. Appl. Clay Sci. 2008, 42: 25–31. https://doi.org/10.1016/j.clay.2008.01.019.
44. Shichang Lv., Wei Z., Song L., Wenfang S. A novel method for preparation of exfoliated UV-curable polymer/clay nanocomposites. Macromol. Nanotec. 2008, 44: 1613–1619 doi:10.1016/j.eurpolymj.2008.04.005.
45. Hailin T., Guiping M., Ming X., Jun N. Photopolymerization and Characteristics of Reactive Organoclay–Polyurethane Nanocomposites. Pol. Comp. 2009, 30: 612–618 https://doi.org/10.1002/pc.20595.
46. Dean K.M., Bateman S.A., Simons R. A comparative study of UV active silane-grafted and ion-exchanged organo-clay for application in photocurable urethane acrylate nano- and micro-composites. Polymer. 2007, 48: 2231–2240. https://doi.org/10.1016/j.polymer.2007.02.044.
47. Savelyev Yu. V., Gonchar A.N., Travinskaya T.V. New Montmorillinite Modifier for Creation of Polyurethane Acrylate/Organoclay Nanocomposites by in situ Polymerization. J. Chem. Eng. Chem. Res. 2015, 2: 511–520.