2024 (1) 1

https://doi.org/10.15407/polymerj.46.01.003

CATALYTIC EFFECT OF N-PHENYLAMINOPROPYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANE IN THE SYNTHESIS OF HYBRID NANOCOMPOSITES BASED ON POLYCYANURATE

Оlga Grigoryeva1* (ORCID: 0000-0003-1781-7124), Diana Shulzhenko1 (ORCID: 0000-0002-5406-5235), Кristina Gusakova1 (ORCID: 0000-0002-0827-7042), Olga Starostenko1 (ORCID: 0000-0002-8989-704X), Alexander Fainleib1 (ORCID: 0000-0001-8658-4219), Daniel GRANDE2** (ORCID: 0000-0002-9987-9961)
1Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske highway, Kyiv, 02155, Ukraine,

2Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23, rue du Loess, 67034 Strasbourg, France

*e-mail: grigoryevaolga@i.ua

**e-mail: daniel.grande@cnrs.fr
Polym. J., 2024, 46, no. 1: 3-14.

Section: Polymer synthesis.

Language: Ukrainian.

Abstract:

Organic-inorganic nanocomposites based on heat-resistant crosslinked polycyanurate (PCN) and N-phenylaminopropyl polyhedral oligomeric silsesquioxane (NPAP-POSS), containing eight reactive secondary amino groups, were synthesized using the in situ reactive formation method. Fourier transmission infrared (FTIR) spectroscopy and dynamic differential scanning calorimetry (DSC) methods were used to study the effect of NPAP-POSS on the kinetics of bisphenol E dicyanate ester (DCBE) polycyclotrimerization during the formation of PCN in PCN/NPAP-POSS nanocomposites. The content of the nanofiller was varied from 0.05 to 1.00 wt.%. Based on the results of FTIR spectral studies, the main kinetic peculiarities of PCN formation were found and their changes under the action of NPAP-POSS nanofiller were determined. A significant catalytic effect of NPAP-POSS on the polycyclotrimerization of DCBE was found, which is confirmed by a decrease in the time of the onset of auto-acceleration, an acceleration of the conversion of cyanate groups of DCBE and the formation of triazine cycles of PCN, an increase in the values of the maximum reaction rate, a decrease in the duration of the reaction, etc. The dynamic DSC method also confirmed the catalytic effect of NPAP-POSS on the formation of PCN in the nanocomposites and established the main kinetic characteristics depending on the content of the nanofiller: a significant decrease in the temperature of the exothermic maximum, an increase in the reaction enthalpy, non-monotonic changes in the induction period and reaction rate, etc. From the analysis of the experimental data, it was concluded that the detected changes in the kinetics of the in situ reaction formation of PCN/NPAP-POSS nanocomposites and the recorded catalytic effect of the nanofiller are due to the fact that two chemical processes occur during the synthesis of the nanocomposites: chemical interaction of –O–CN groups of DCBE with secondary –NH groups of NPAP-POSS, which led to further embedding of nanoparticles into the resulting polymer matrix and the direct polycyclotrimerization of DCBE with formation of hybrid polycyanurate network. Schemes of the sequential reactions explaining the catalytic effect of the nanofiller in the synthesis of hybrid PCN/NPAP-POSS nanocomposites are proposed. It was concluded that under the selected conditions of the synthesis, the greatest catalytic effect of the nanofiller is manifested at its content of 0.10 wt.%, since for this sample the maximum shift of the reaction exothermic peak towards lower temperatures, the maximum reaction rate, and the minimum induction period and reaction start temperature were recorded. The results of the research make it possible to optimize the synthesis of heat-resistant materials promising for use in special-purpose structures.

Key words: nanocomposites, polycyanurate, polyhedral oligomeric silsesquioxane, kinetics of polycyclotrimerization of cyanates.

References

1. Anandhan S., Bandyopadhyay S. Polymer nanocomposites: from synthesis to applications, Chapter 1. In book: Nanocomposites and polymers with analytical methods/Ed.: Cuppoletti. InTech: Rijeka, Croatia, 2011. ISBN 978-953-307-352-1.
2. Mittal V. Polymer nanocomposites: synthesis, microstructure, and properties. Chapter 1. In book: Optimization of polymer nanocomposite properties. / Ed. V. Mittal. Wiley-VCH: Verlag GmbH, 2010. ISBN 978-352-732-521-4. https://doi.org/10.1002/9783527629275.
3. Ayandele E., Sarkar B., Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials, 2012, 2: 445−475. https://doi.org/3390/nano2040445.
4. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36: 1649−1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.
5. Wu J., Mather P.T. POSS polymers: physical properties and biomaterials applications. Polym. Rev., 2009, 49: 25–63. https://doi.org/10.1080/15583720802656237.
6. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res., 2009, 12: 1–39. https://doi.org/10.1590/S1516-14392009000100002.
7. Grigoryeva О.P., Starostenko О.N., Gusakova К.G., Fainleib А.М., Saiter J.M., Youssef B., Grande D. The effect of epoxy-functionalized POSS on chemical structure and viscoelastic properties of nanocomposites based on polycyanurate networks. Polimernyi Zhurnal, 2014, 36, no. 4: 341–351. (in Ukrainian). https://doi.org/10.1002/masy.201300174.
8. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. High performance multifunctional cyanate ester oligomer-based network and epoxy-POSS containing nanocomposites: structure, dynamics, and properties. Polym. Compos., 2020, 41: 1900−1912. https://doi.org/10.1002/pc.25506.
9. Grigoryeva O., Fainleib A., Starostenko O., Shulzhenko D., Rios de Anda A., Gouanvé F., Espuche E., Grande D. Effect of amino-functionalized polyhedral oligomeric silsesquioxanes on structure-property relationships of thermostable hybrid cyanate ester resin based nanocomposites. Polymers, 2023, 15: 4654. https://doi.org/10.3390/polym15244654.
10. Kandelbauer A. Cyanate esters. In book: Handbook of thermoset plastics/Ed.: William Andrew Publishing 2014, Reutlingen, Germany, 425–457. https://doi.org/10.1016/B978-1-4557-3107-7.00011-7.
11. McConnell V.P. Resins for the hot zone, part II: BMIs, CEs, benzoxazines and phthalonitriles. High Perform. Composites, 2009, 21: 49–54. https://www.compositesworld.com/articles/resins-for-the-hot-zone-part-ii-bmis-ces-benzoxazines-and-phthalonitriles.
12. Wang D.-Y., Liu J.-C., Chen Y.-W., Li S.-H., Wei H.-Z., Xia M. Advances on manufacturing of POSS reinforced resin matrix composites. In: 2015 International Conference on Material Science and Applications: 358–363. https://doi.org/10.2991/icmsa-15.2015.66.
13. Zhang W., Müller A.H.E. Synthesis of tadpole-shaped POSS-containing hybrid polymers via “click chemistry”. Polymer, 2010, 51: 2133–2139. https://doi.org/10.1016/j.polymer.2010.03.028.
14. Bartczak Z., Grala M. Mechanical performance of hybrid nanocomposites obtained by reactive blending. SPE Plastics Research Online, 2013, https://doi.org/10.2417/spepro.004845.
15. Mishra K., Singh R.P. Quantitative Evaluation of the effect of dispersion techniques on the mechanical properties of polyhedral oligomeric silsesquioxane (POSS)–epoxy nanocomposites. Polym. Compos., 2018, 39: E2445–E2453. https://doi.org/10.1002/pc.24744.
16. Jones I. K., Zhou Y. X., Jeelani S., Mabry J. M. Effect of polyhedral-oligomeric-silsesquioxanes on thermal and mechanical behavior of SC-15 epoxy. EXPRESS Polym. Lett., 2008, 2: 494–501. DOI: https://doi.org/10.3144/expresspolymlett.2008.59.
17. Zhou H., Chua M. H., Xu J. Manufacturing of POSS-polymer nanocomposites. Chapter 2. In book: Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites / Ed. Elsevier, 2021, 27–51. ISBN 9780128213476. https://doi.org/10.1016/B978-0-12-821347-6.00003-2.
18. Lagashetty A., Venkataraman A. Polymer nanocomposites. Resonance, 2005, 10: 49–57. https://doi.org/10.1007/BF02867106.
19. Pittman C., Li G.-Z., Ni H. Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol. Symp., 2003, 196: 301–325. https://doi.org/10.1002/masy.200390170.
20. Liang K., Li G., Toghiani H., Koo J. H., Pittman C. U. Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization. Chem. Mater., 2006, 18: 301–312. https://doi.org/10.1021/cm051582s
21. Cho H.-S., Liang K., Chatterjee S., Pittman C.U.Jr. Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. J. Inorg. Organomet. Polym., 2005, 15: 541–553. https://doi.org/10.1007/s10904-006-9008-0.
22. Kourkoutsaki Th., Logakis E., Kroutilova I., Matejka L., Nedbal J., Pissis P. Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites. J. Appl. Polym. Sci., 2009, 113, no. 4.: 2569–2582. https://doi.org/10.1002/app.30225.
23. Zhang Z., Liang G., Wang X. Epoxy-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin organic–inorganic hybrids with enhanced mechanical and thermal properties. Polym. Int., 2014, 63, no. 3: 552–559. https://doi.org/10.1002/pi.4557.
24. Lu T., Liang G., Guo Z. Preparation and characterization of organic–inorganic hybrid composites based on multiepoxy silsesquioxane and cyanate resin. J. Appl. Polym. Sci., 2006, 101: 3652–3658. https://doi.org/10.1002/app.22743.
25. Jiao J., Shao Y., Huang F., Wang J., Wu Z. Toughening of POSS–MPS composites with low dielectric constant prepared with structure controllable micro/mesoporous nanoparticles. RSC Adv., 2018, 8: 40836–40845. https://doi.org/10.1039/c8ra07430e.
26. Starostenko O., Bershtein V., Fainleib A., Egorova L., Grigoryeva O., Sinani A., Yakushev P. Thermostable polycyanurate-polyhedral oligomeric silsesquioxane hybrid networks: synthesis, dynamics and thermal behavior. Macromol. Symp., 2012, 316: 90–96. https://doi.org/10.1002/masy.201250612.
27. Bershtein V. , Fainleib А., Egorova L., Grigoryeva O., Kirilenko D., Konnikov S., Ryzhov V., Starostenko O., Yakushev P., Yagovkina M., Saiter J.-M. The Impact of ultra-low amounts of introduced reactive POSS nanoparticles on structure, dynamics and properties of densely cross-linked cyanate ester resins. Eur. Polym. J., 2015, 67: 128–142. https://doi.org/10.1016/j.eurpolymj.2015.03.022.
28. Bershtein V., Fainleib A., Yakushev P., Egorova L., Grigoryeva O., Ryzhov V., Starostenko O. Thermostable cyanate ester resins and POSS-containing nanocomposites: influence of matrix chemical structure on their properties. Polym. Adv. Tech., 2016, 27, no.3: 339–349. https://doi.org/10.1002/pat.3645.
29. Liang K., Toghiani H., Li G., Pittman C.U. Jr. Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 3887–3898. https://doi.org/10.1002/pola.20861.
30. Zhang Z., Liang G., Wang X., Adhikari S., Pei, J. Curing behavior and dielectric properties of amino-functionalized polyhedral oligomeric silsesquioxane/cyanate ester resin hybrids. High Perform. Polym., 2013, 25: 427−435. https://doi.org/10.1177/0954008312469234.
31. Lin Y., Jin J., Song M., Shaw S.J., Stone C.A. Curing dynamics and network formation of cyanate ester resin/polyhedral oligomeric silsesquioxanes nanocomposites. Polymer, 2011, 52: 1716–1724. https://doi.org/10.1016/j.polymer.2011.02.041.
32. Tang C., Yan H., Li S., Bai L., Lv Q. Effect of novel polyhedral oligomeric silsesquioxane containing hydroxyl group and epoxy group on the dicyclopentadiene bisphenol dicyanate ester composites. Polym. Test., 2017, 59: 316–327. https://doi.org/10.1016/j.polymertesting.2017.02.014.
33. Chemistry and technology of cyanate ester resins / Ed. I. Hamerton. London: Chapman 978-3-527-62927-5.
34. Fainleib А.М., Gusakova К.G., Lavreniuk N.S. The interaction of dicyanate ester of bisphenol E with aniline // Ukr. Chem. Journal, 2016, 82, no 1: 52–58 (in Russian).
35. Członka S., Strakowska A., Strzelec K., Adamus-Włodarczyk A., Kairyte A., Vaitkus S. Composites of rigid polyurethane foams reinforced with POSS. Polymers, 2019, 11: 336. https://doi.org/10.3390/polym11020336.
36. Bauer J., Bauer M. Curing of cyanates with primary amines. Macromol. Chem. Phys., 2001, 202: 2213−2220. https://doi.org/10.1002/1521-3935(20010701)202:11<2213::AID-MACP2213>3.0.CO;2-B.