2024 (1) 4

https://doi.org/10.15407/polymerj.46.01.037

SPECTRAL ANALYSIS AND DYNAMIC PROPERTIES OF POLYURETHANES DYED WITH RHODAMINE 6G AND RHODAMINE B AS MATRICES OF A SOLID-STATE LASER ELEMENT

Liudmyla Kosyanchuk1* (ORCID: 0000-0002-3617-9538), Nataliia Kozak1 (ORCID: 0000-0001-6200-4048), Nataliia Babkina1 (ORCID: 0000-0002-1803-0887), Oksana Antonenko1 (ORCID: 0000-0002-6451-7944), Volodymyr Bezrodnyi2 (ORCID: 0000-0001-9965-8707), Tamara Bezrodna2 (ORCID: 0000-0003-1935-7475)
1Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske highway, Kyiv, 02155, Ukraine,

2Institute of Physics NAS of Ukraine, 46, Prospect Nauky, Kyiv,03680, Ukraine,

*e-mail: lkosyanchuk@ukr.net
Polym. J., 2024, 46, no. 1: 37-46.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

A comparison was carried out of the nature of intermolecular interactions, elastic properties and gas permeability of the crosslinked polyurethanes doped with xanthene dyes and original polyurethane using IR spectroscopy, dynamic mechanical analysis (DMA) and electron paramagnetic resonance (EPR). The introduced dye can be considered as useful microimpurity which, however, can affect the efficiency of the laser. In IR spectra of polyurethanes the complex band of stretching vibrations of C=O groups is sensitive to the nature of intermolecular interaction of urethane groups. From the analysis of that band it is shown that in the presence of dyes, self-association of urethane groups within the hard segment predominates and the interaction of urethane groups with the oligoether component decreases, which can contribute to increasing the mobility of the flexible component. A decrease in the dynamic storage modulus (E’) and a decrease in the glass transition temperature (Tc) of polyurethanes in the presence of dyes is shown by the DMA method. The results of both DMA and IR spectroscopy indicate a greater increase in the mobility of the elastic component with the introduction of the rhodamine B dye, covalently bound to the polyurethane chain. According to nitroxyl paramagnetic probe data the introduction of both rhodamine B and rhodamine 6G dyes into polyurethanes increases their permeability to vapors of low-molecular weight compounds, but rhodamine 6G has a more prominent effect on this characteristic. This is consistent with DMA data indicating a greater increase in the Mc value in the presence of rhodamine 6G in polyurethane. The obtained results make it possible to determine the optimal composition of the active laser medium and are important in assessing the radiation resistance of the polymer matrix. Its increase is facilitated by a decrease in the storage modulus and an increase in the gas permeability of the polymer, leading to a decrease in pressure in the area of local heating.

Key words: solid-state dye laser, xanthene dyes, polyurethane, radiation resistance, polymer elasticity, storage modulus.

References

1. Costela A., García-Moreno I., Agua D., García O., Sastre R. Solid state dye lasers: new materials based on silicon. Optics Journal, 2007, 1: 1–6. http://hdl.handle.net/10261/212150.
2. Rahn M.D., King T.A., Gorman A.A. Hamblett I. Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers. Appl. Optics., 1997, 36, no. 24: 5862-5871. https://doi.org/10.1364/AO.36.005862.
3. Alkallas F.H., AL-Rebdi T. A., Masilamani V. Photophysics of Energy Transfer Between Rh 6G and Oxz 9 Dyes in New Solid Matrices. Sensors & Transducers, 2018, 226, no.10: 62–70.
4. Al-ghamdi А.A., Mahrous E.M. Dye-Doped Polymer Laser Prepared by a Novel Laser Polymerization Method. International Journal of Electrochemical Science, 2011, 6: 5510–5520. https://doi.org/10.1016/S1452-3981(23)18424-0.
5. Cazeca M.J., Jiang X., Kumar J., Tripathy S. K. Epoxy matrix for solid-state dye laser applications. Applied Optics, 1997, 36, no.21: 4965–4968. https://doi.org/10.1364/ao.36.004965.
6. Bezrodna T.V., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F. Spectral, photophysical and lasing properties of Rhodamine dyes in the polyurethane acrylate matrix. Optics and Laser Technology, 2021, 138: 106868. https://doi.org/10.1016/j.optlastec.2020.106868.
7. Bezrodna T.V., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F., Antonenko O.I., Brovko O.O. Solvent effects on photophysical properties of organic dyes in the polymer matrix Polymer journal (Ukr.), 2020, 42, no. 2: 104–113. https://doi.org/10.15407/polymerj.42.02.104.
8. Lepkowicz R.S.,Przhonska O.V.,Hales J.M.,Hagan D.J.,Van Stryland E.W., Bondar M.V., Slominsky Y.L., Kachkovski A.D. Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements. Chemical Physics, 2003, 286, no. 2-3: 277–291. https://doi.org/10.1016/S0301-0104(02)00937-0.
9. Singha S., Kanetkarb V.R., Sridhara G., Muthuswamyb V., Rajab K. Solid-state polymeric dye. J. Luminescence, 2003, 101: 295–291. https://doi.org/10.1016/S0022-2313(02)00571-9.
10. Callewaert K., Martelé K., Breban L., Naessens K., Vandaele P., Baets R. , Geuskens G., Schacht E. Excimer laser induced patterning of polymeric surfaces. Excimer laser induced patterning of polymeric surfaces. Applied Surface Science, 2003, 208–209: 218–225. https://doi.org/10.1016/S0169-4332(02)01376-4.
11. Bezrodnyi V.I., Negryiko A.M. , Klishevich G.V. , Stratilat M.S., Kosyanchuk L.F., Todosiichuk T.T. Investigations of photophysical and generation properties of active elements based on dyes in aliphatic polyurethane matrix. Journal of Polymer Reserch, 2013, 20, no. 9: 246. https://doi.org/10.1007/s10965-013-0246-x.
12. Bezrodnyi V.I., Stratilat М.S., Kosyanchuk L.F., Negriyko А.М., Klishevich G.V. , Todosiichuk T.T. Spectral and photophysical properties of phenalenone dyes in aliphatic polyurethane matrix. Functional materials, 2015, 22, no. 2: 212–218. http://dx.doi.org/10.15407/fm22.02.212.
13. Ishchenko A.A. Molecular engineering of dye-doped polymers for optoelectronics. Polym. Adv. Technol., 2002, 13, no. 10–12: 744–752. https://doi.org/10.1002/pat.26.
14. Sastre R., Costela A. Polymeric Solid-state Dye Lasers. Advanced Materials, 1995, 7, no. 2: 198–202. https://doi.org/10.1002/adma.19950070222.
15. Costela A., Florido F., Garcia-Moreno I., Duchowicz R., Amat-Guerri F., Figuera J.M., Sastre R. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G. Appl. Phys. B, 1995, 60, no. 4: 383–389. https://doi.org/10.1007/BF01082275.
16. Ishchenko A.A., Grabchuk G.P. Physical and chemical problems of the creation of photostable converters of light energy on the basis of dyed polymers. Theor. Exp. Chem., 2009, 45: 143–167. https://doi.org/10.1007/s11237-009-9078-5
17. Kosyanchuk L.F., Bezrodnа T.V., Stratilat M.S., Menzheres G.Ya., Kozak N.V., Todosiichuk T.T. Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J. Polym. Res., 2014, 21, no.10: 564. https://doi.org/10.1007/s10965-014-0564-7.
18. Bezrodna T.V., Ishchenko A.A., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F., Antonenko O.I., Brovko O.O. Covalent bonding effects on spectral, photophysical and generation properties of indocarbocyanine dyes in polyurethanes. Optical and laser Technology, 2021, 144: 1074112. https://doi.org/10.1016/j.optlastec.2021.107412.
19. Bezrodna T.V..Ishchenko A.A, Kosyanchuk L.F., Derevyanko N.A., Antonenko O.I., Bezrodnyi V.I. Luminescence spectral peculiarities of polymethine dye, bonded covalently to polyurethane matrix. Moletcular crystals and Liquid crystals, 2022, 748, no.1: 90–98. https://doi.org/10.1080/15421406.2022.2067664.
20. Kosyanchuk L.F, Bezrodna T.V., Antonenko O.I., Bezrodnyi V.I., Negriyko A.M., Brovko O.O. Interaction peculiarities of the Rhodamine B dye with polyurethane diisocyanates of different chemical types. Molecular Crystals and Liquid Crystals, 2022, 747, no. 1: 120–130. https://doi.org/10.1080/15421406.2022.2066798.
21. S. Kwak, N.R. Kim, K. Lee, J. Yi, J.H. Kim, B. Bae Enhancement of fluorescence and lasing properties of covalent bridged fluorescent dye in organic–inorganic hybrid materials. J. Sol-Gel Sci. Technol., 2011, 60: 137–143.https://doi.org/10.1007/s10971-011-2569-6.
22. Schab-Balcerzak E., Konieczkowska J., Siwy M., Sobolewska A., Wojtowicz M., Wiacek M. Comparative studies of polyimides with covalently bonded azo-dyes with their supramolecular analoges: Thermo-optical and photoinduced properties. Opt. Mater., 2014, 36, no.5: 892–902. https://doi.org/10.1016/j.optmat.2013.12.017.
23. Anderson B.R., Gunawidjaja R., Eilers H. Photodegradation and self-healing in a Rhodamine 6G dye and Y2O3nanoparticle-doped polyurethane random laser. Appl. Phys. B, 2015, 120:1–12. https://doi.org/10.1007/s00340-015-6141-x.
24. Nikolaev S.V. Pozhar V. V., Dzyubenko M. I. Research of new solid-state active media on the basis of industrial polyurethane compounds, activated by dyes. Radiofizika i elektronika (Rus.), 2012, 3(17), no. 2: 80–86.
25. Kosyanchuk L.F., Stratilat M.S., Kozak N.V. Todosiichuk T.T. Vliyanie krasitelej fenalenonovogo ryada na formirovanie poliuretanov. Ukrainskij himicheskij zhurnal (Rus.), 2015, 81, no. 1: 56– 61.
26. Kozak N., Kosyanchuk L., Bezrodna T., Bezrodnyi V., Antonenko O. Influence of phenalenone class dyes on characteristics that determine the radiation resistance of polyurethane matrices in active elements of solid-state lasers. Moletcular crystals and Liquid crystals, 2022, 748, no. 1: 19– 28. https://doi.org/10.1080/15421406.2022.2067657.
27. Kozak N.V. The method of nitroxyl probes for the study of molecular dynamics and heterogeneous structure of metal-containing polymer. Polymer Journal (Ukr.), 2009, 31, no. 3: 207–213.
28. Kosyanchuk L.F., Bezrodnyi V.I., Antonenko O.I., Bezrodna T.V., Nesin S.D., Brovko O.O., Negriyko A.M. Effects of the chemical nature, structure and molecular weight of polyurethane components on the spectral, characteristics of the introduced rhodamine 6G. Polymer Journal (ukr.), 2022, 44, no. 1: 53–60. https://doi.org/10.15407/polymerj.44.01.053.
29. Kosyanchuk L.F., Kozak N.V., Babkina N.V., Bezrodna T.V., Roshchin O.M., Bezrodnyi V.I., Antonenko O.I., Brovko O.O. Irradiation effects and beam strength in polyurethane materials for laser elements. Optical Materials, 2018, 85: 408–413. https://doi.org/10.1016/j.optmat.2018.09.010.
30. Kosyanchuk L.F, Bezrodna T.V., Antonenko O.I., Bezrodnyi V.I., Negriyko A.M., Brovko O.O. Interaction peculiarities of the Rhodamine B dye with polyurethane diisocyanates of different chemical types. Molecular Crystals and Liquid Crystals, 2022, 747, no. 1: 120–130. https://doi.org/10.1080/15421406.2022.2066798.
31. Vatulev V.N., Laptij S.V., Kercha Yu.Yu. Infrakrasnye spektry i struktura poliuretanov. Kiev: Naukova dumka, 1987: 188.
32. Dechant J., Danz R., Kimmer W., Schmolke R. Ultraspectroscopische Untersuchungen an Polymeren. Berlin: Akademie –Verlag, 1972: 471
33. Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. New York-Basel: Marcel Dekker Inc., 1993: 557. ISBN: 0-8247-8964-4.
34. Kosyanchuk L., Kozak N., Babkina N., Bezrodnіi V., Stratilat M. The dynamic characteristics of polyurethane matrix of dye laser solid-state active elements. French-ukrainian journal of chemistry, 2016, 4, no. 2: 40–46. https://doi.org/10.17721/fujcV4I2P40-46.
35. Kozak N., Lobko Eu. Bottom-up Nanostructured Segmented Polyurethanes with Immobilized in situ Transition and Rear-Earth Metal Coordination Compounds. Polymer Topology – Structure and Properties Relationship. http://dx.doi.org/10.5772/48002. In book: Polyurethanes. Chapter 4. Zafar F., Sharmin E. (Ed.), Croatia, 2012: 51–78. ISBN: 978-953-51-0762. https://doi.org/10.5772/2416.
36. Kosyanchuk L., Kozak N., Antonenko O., Nizelskii Yu., Lipatov Yu. Reaction Kinetics and Macromolecule – Metal Chelate Complex Formation in Metal Containing Semi- Interpenetrating Polymer Networks Based on Cross-Linked Polyurethane and Linear Poly(methyl methacrylate). Сhemistry and Chemical Technology, 2008. 2, no. 4: 263–270. https://doi.org/10.23939/chcht02.04.263.