2024 (2) 1
https://doi.org/10.15407/polymerj.46.02.087
Protic polymeric ionic liquid of a block oligomeric structure with ionic bonds in the main chain
Mariana Gumenna1* (ORCID: 0000-0001-8363-6466), Oleksandr StriutskyI1 (ORCID: 0000-0002-1457-2312), Dmytro Kozachuk1 (ORCID: 0000-0003-3825-093X), Andrii Pylypenko1,2 (ORCID: 0000-0003-0538-1386), Viktor Kravchenko3 (ORCID: 0000-0002-8732-7502), Leonid Kovalenko4 (ORCID: 0000-0003-1854-9694), Valery Shevchenko1** (ORCID: 0000-0003-2100-4468)
1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
2Dоnetsk Institute for Physics and Engineering named after O.O. Galkin of the NAS of Ukraine, 46 Nauki Ave., Kyiv 03028, Ukraine,
3L.M. Litvinenko Institute of Physical-organic Chemistry and Coal Chemistry of the NAS of Ukraine, 50 Kharkivske Highway, Kyiv 02155, Ukraine,
4V.I. Vernadsky Institute of General and Inorganic Chemistry of the NAS of Ukraine, 32/34 Academician Palladin Ave., Kyiv 03142, Ukraine
*e-mail: mary-g@ukr.net
**e-mail: valpshevchenko@gmail.com
Polym. J., 2024, 46, no. 2: 87-95.
Section: Structure and properties.
Language: English.
Abstract:
A method for the synthesis of protic polymeric ionic liquid (PIL) of a block oligomeric structure with ionic bonds in the main chain, which turns into a liquid state at temperatures below 50 °C, was developed. Ionic bonding was used to form a polymer chain. It was formed as a result of neutralization reaction between oligomers of telechelic structure with terminal acidic and basic groups. A new linear oligomer containing basic tertiary nitrogen atoms at the ends of the oligoether chain (PEO-2NEt2) was obtained by reaction of α,ω-diglycidyl ether of polyethylene glycol MW 1000 with N,N-diethylamine. A linear oligomer with terminal sulfonic acid groups (PEO-2SO3H), which is a product of the interaction of polyethylene glycol (MW 1000) with the cyclic anhydride of 2-sulfobenzoic acid, was used as an acidic linear oligomer. The synthesis of PIL [PEO-2H-2NEt2]2+ [PEO-2SO3]2- was carried out by neutralization of basic oligomer PEO-2NEt2 with the acidic oligomer PEO-2SO3H in their molar ratio of 1:1. The structure of the obtained compound was characterized by the methods of FTIR and 1H NMR spectroscopy. According to the DSC data, the synthesized PIL contains an amorphous phase with a glass transition temperature of -49.7 °С and a crystalline phase with a melting temperature of 34.5 °С. The decomposition onset temperature corresponding to 5% weight loss is 271 °C according to the TGA. The ionic conductivity of PIL studied by dielectric relaxation spectroscopy under anhydrous conditions in the range from 40 °C to 100 °C increases with increase in temperature and reaches 2.7·10-4 S/cm. The resulting compound is promising as a proton-conducting medium for various electrochemical devices.
Key words: polymeric ionic liquids, acid-base interaction, proton exchange media, proton conductivity.
REFERENCES
1. Mecerreyes D. Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011, 36, 12: 1629-1648. https://doi.org/10.1016/j.progpolymsci.2011.05.007.
2. Shaplov A.S., Marcilla R., Mecerreyes D. Recent advances in innovative polymer electrolytes based on poly (ionic liquid)s. Electrochimica Acta, 2015, 175: 18-34. https://doi.org/10.1016/j.electacta.2015.03.038.
3. Shevchenko V.V., Stryutskii A.V., Klimenko N.S. Polymeric organic-inorganic proton-exchange membranes for fuel cells produced by the sol-gel method. Theoretical and Experimental Chemistry, 2011, 47: 67-91. https://doi.org/10.1007/s11237-011-9187-9.
4. Amarasekara A.S. Acidic ionic liquids. Chemical Reviews, 2016, 116: 6133-6183. https://doi.org/10.1021/acs.chemrev.5b00763.
5. Díaz M., Ortiz A., Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 2014, 469: 379-396. https://doi.org/10.1016/j.memsci.2014.06.033.
6. Prescher S., Polzer F., Yang Y., Siebenbürger M., Ballauff M., Yuan J. Polyelectrolyte as solvent and reaction medium. Journal of the American Chemical Society, 2014, 136, no. 1: 12-15. https://doi.org/10.1021/ja409395y.
7. Ke Y., Zhang W., Suo X., Ren Q., Xing H., Yuan J. β-Cyclodextrin-derived room temperature macromolecular ionic liquids by PEGylated anions. Macromolecular Rapid Communications, 2020, 41, no. 8: e1900576. https://doi.org/10.1002/marc.201900576.
8. Porcarelli L., Shaplov A.S., Salsamendi M., Nair J.R., Vygodskii Y.S., Mecerreyes D., Gerbaldi C. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Applied Materials & Interfaces, 2016, 8, 16: 10350-10359. https://doi.org/10.1021/acsami.6b01973.
9. Porcarelli L., Vlasov P.S., Ponkratov D.O., Lozinskaya E.I., Antonov D.Y., Nair J.R., Gerbaldi C., Mecerreyes D., Shaplov A.S. Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes. European Polymer Journal, 2018, 107: 218-228. https://doi.org/10.1016/j.eurpolymj.2018.08.014.
10. Gumenna M.A., Klimenko N.S., Stryutsky O.V., Kovalenko L.L., Kravchenko V.V., Shevchuk О.V., Shevchenko V.V. Polymeric proton exchange media with ionic bonds in the main chain of the polymer. Reports of the National Academy of Sciences of Ukraine, 2020, 12: 60-66. https://doi.org/10.15407/dopovidi2020.12.060.
11. Gumenna M.A., Stryutsky A.V., Sobko O.O., Kozachuk D.V., Kravchenko V.V., Kovalenko L.L., Trachevsky V.V., Shevchenko V.V. Protic ion-crosslinked polymer ionic liquid (PIL) based on linear oligomers. Polimernyi Zhurnal, 2023, 45, 1: 27-36. https://doi.org/10.15407/polymerj.45.01.027.
12. Hazra A., Samanta S.K. Main-Chain Cationic Polyelectrolytes: Design, Synthesis, and Applications. Langmuir, 2024, 40, 5: 2417–2438. https://doi.org/10.1021/acs.langmuir.3c02670.
13. Venkataraman Sh., Tan J.P.K., Chong Sh. T., Chu C.Y.H., Wilianto E.A., Cheng C.X., Yang Y.Y. Identification of structural attributes contributing towards potency and selectivity of antimicrobial polyionenes: Amides are better than esters. Biomacromolecules, 2019, 20, 7: 2737–2742. https://doi.org/10.1021/acs.biomac.9b00489.
14. Shevchenko V.V., Gumennaya M.A., Stryutsky A.V., Klimenko N.S., Trachevskii V.V., Klepko V.V., Davidenko V.V. Reactive oligomeric protic cationic linear ionic liquids with different types of nitrogen centers. Polymer Science, Series B, 2018, 60, 5: 598-611. https://doi.org/10.1134/S1560090418050160.
15. Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumenna M.A., Fomenko A.A., Bliznyuk V.N., Trachevsky V.V., Davydenko V.V., Tsukruk V.V. Protic and aprotic anionic oligomeric ionic liquids. Polymer, 2014, 55, 16: 3349-3359. https://doi.org/10.1016/j.polymer.2014.04.020.
16. Shevchenko V.V., Gumenna M.A., Korolovych V.F., Stryutsky A.V., Trachevsky V.V., Hrebnov O., Klepko V.V., Klymenko N.S., Shumsky V.F., Davydenko V.V., Ledin P.A. Synthesis and properties of protic hydroxylic ionic liquids with two types of basic centers in their composition. Journal of Molecular Liquids, 2017, 235: 68-76. https://doi.org/10.1016/j.molliq.2017.01.020.
17. Shevchenko V.V., Gumenna M.A., Klimenko N.S., Stryutsky O.V., Trachevsky V.V., Kovalenko L.L., Kravchenko V.V. Protic oligosilsesquioxane dicationic ionoc liquids with two types of ionic sites in organic frame. Theoretical and Experimental Chemistry, 2022, 58, 2: 143-149. https://doi.org/10.1007/s11237-022-09732-7.
18. Toroptseva A.M., Belogorodskaya K.V., Bondarenko V.M. Laboratory workshop on chemistry and technology of high-molecular compounds. L.: Chemistry, 1972: 416.
19. Kadar E.P., Wujcik C.E., Wolford D.P., Kavetskaia O. Rapid determination of the applicability of hydrophilic interaction chromatography utilizing ACD Labs Log D Suite: A bioanalytical application. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 863, no.1: 1-8. https://doi.org/10.1016/j.jchromb.2007.11.036.
20. Greaves T.L, Drummond C.J. Protic ionic liquids: properties and applications. Chemical Reviews, 2008, 108, 1: 206-237. https://doi.org/10.1021/cr068040u.
21. Pretsch E., Bühlmann Ph., Badertscher M. Structure determination of organic compounds. Tables of spectral data. 4th Edition. Springer-Verlag, Berlin / Heidelberg, 2009: 443. ISBN 978-3-540-93809-5.
22. Kyritsis A., Pissis P., Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. Journal of Polymer Science Part B: Polymer Physics, 1995, 33, 12: 1737-1750. https://doi.org/10.1002/polb.1995.090331205.