2024 (2) 3
https://doi.org/10.15407/polymerj.46.02.103
The effect of chemical structure of vinyl chloride based polymers on its the compatibility with polyurethaneurea elastomer
Tetyana Malysheva* (ORCID: 0000-0002-3046-6819), Oleksandr Tolstov (ORCID: 0000-0001-6016-9308), Olha Zinchenko (ORCID: 0000-0002-7455-7448), Valentyna Ezhova (ORCID: 0000-0001-6847-0293)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
*e-mail: malysheva_tat@ukr.net
Polym. J., 2024, 46, no. 2: 103-110.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The effect of the chemical structure of vinyl chloride-based polymers, such as poly(vinyl chloride) (PVC), chlorinated PVC (cPVC), vinyl chloride/vinylidene chloride copolymer VCVD-40TM, vinyl chloride/vinyl acetate copolymer А-15TM on its compatibility with poly(ether-urethane)urea elastomer (PUU) was studied by DSC and FTIR spectroscopy. The segmented PUU was synthesized by prepolymer approach in N,N-dimethylformamide (DMF) solution using poly(propylene glycol) of number-averaged molecular weight (Mn) of 1000 Da, 2,4-tolylenediisocyanate and tolylene 2,4-diamine as a chain extender at a molar ratio of 1:2:1. PUU/vinyl chloride-based polymer blends was prepared by solution casting technique vie DMF solution. It was found a compatibility of PUU based blends containing 30 % PVC (PUU/30PVC blend) or cPVC (PUU/30cPVC) were initiated by strong hydrogen bonding. As a result, the blends are characterized by single wide relaxation transition. A glass transition temperature (Тс) of PUU/30PVC composite is similar to the theoretical one (ТFс), which is calculated using the Flory-Fox equation, whereas Тс value of PUU/30cPVC composite is higher than ТFс. Introducing polar vinyl acetate or vinylidene chloride fragments into vinyl chloride-based polymer macrochains suppresses the compatibility of components of the polymer blends and initiates the formation of a biphase microheterogeneous structure. The formation of intermolecular hydrogen bonding network at the interface in polymer-polymer blends is confirmed by FTIR spectroscopy.
Comparative analysis of experimental and theoretically calculated (additive) tensile characteristics of polymer blends demonstrates their substantial dependence on interface interactions between the constituents. The highest strengthening effect was observed for cPVC or PVC-containing nanocomposites.
Key words: polyurethaneurea elastomer, vinyl chloride polymer, polymer blends, interface interactions, strength.
REFERENCES
1. Chang-Sik Ha, Yiyeon Kim, Won-Ki Lee, Won-Jei Cho Youngkyoo Kim Fracture toughness and properties of plasticized PVC and thermoplastic polyurethane blends. Polymer, 1998, 39: 4765-4772. http://dx.doi.org/10.1016/S0032-3861(97)10326-3.
2. Sudaryanto, Takashi Nishino, Masaki Ueno, Asaoka S, Nakamae K Miscibility of segmented polyurethane/poly(vinyl chloride) blends. J. Appl. Polym. Sci., 2001, 82: 3022–3029. http://dx.doi.org/10.1002/app2157.
3. Chen, Ch. J., Tseng, I. H., Lu, H. T., Tseng, W. Y. Thermal and tensile properties of HTPB-dased PU with PVC blends. Materials Science and Engineering. 2011, 528: 4917–4923. http://dx.doi.org/10.1016/j.msea.2011.03.056.
4. Laukaitiene A., Jankauskaite V., Žukiene K., Norvydas V., Munassipov S., Janakhmetov U. Investigation of polyvinyl chloride and thermoplastic polyurethane waste blend miscibility. Mater. Sci. (Medžiagotyra), 2013, 19: 397-402. https://doi.org/10.5755/j01.ms.19.4.3145.
5. Hezma A.M., Elashmawi I.S., Abdelrazek E.M., Rajeh A., Kamal M. Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single-walled carbon nanotubes. Prog. Natur. Sci.: Mater. Int., 2017, 27: 338-343. http://dx.doi.org/10.1016/j.pnsc.2017.06.001.
6. Ahmad A., Jamshaid F., Adrees M., Iqbal S.S., Sabir A., Riaz T., Zaheer H., Islam A., Jamil T. Novel Polyurethane/Polyvinyl chloride-co-vinyl acetate crosslinked membrane for reverse osmosis (RO). Desalination, 2017, 420: 136-144. https://doi.org/10.1016/j.desal.2017.07.007.
7. Liu X.-M. Mechanical response of composite materials prepared with polyurethane elastomers and polyvinyl chloride films. J. Mechan. Behav. Biomed. Mater., 2023, 146: 106006. https://doi.org/10.1016/j.jmbbm.2023.106006.
8. Polaskova M., Sedlacek T., Kasparkova V., Filip P. Substantial drop of plasticizer migration from polyvinyl chloride catheters using co-extruded thermoplastic polyurethane layers. Mater. Today Communications, 2022, 32: 103895. https://doi.org/10.1016/j.mtcomm.2022.103895.
9. Wang N., Raza A., Si Y., Yu J., Sun G., Ding B. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J. Colloid Interface Sci., 2013, 398: 240–246. https://doi.org/10.1016/j.jcis.2013.02.019.
10. You J., Cai L., Yu R., Xing H., Xue J., Li Y., Jiang Z., Cui D., Tang T. High-performance chlorinated polyvinyl chloride/polyurea nanocomposite foam with excellent solvent resistance, flame-triggered shape memory effect and its upcycling. Composites A: Appl. Sci. Manufact., 2024, 177: 107931. https://doi.org/10.1016/j.compositesa.2023.107931.
11. Zhang Y., Wang J.-Y. Polyvinyl chloride/engineering polymer blends, interpenetrating polymeric networks, and gels. Chapter in Book: Poly(vinyl chloride)-based Blends, Interpenetrating Polymer Networks (IPNs), and Gels., 2024, Pages 179–199. https://doi.org/10.1016/B978-0-323-99474-3.00018-5.
12. Dang G.-P., Gu J.-T., Song J.-H., Li Z.-T., Hao J.-X., Wang Y.-Z., Wang C.-Y., Ye T., Zhao F., Zhang Y.-F., Tay F.R., Niu L.-N., Xia L.-Y. Multifunctional polyurethane materials in regenerative medicine and tissue engineering. Cell Rep. Phys. Sci., 2024, 102053. https://doi.org/10.1016/j.xcrp.2024.102053.
13. Malysheva T.L., Golovan S.V, Klymchyk D.A. Interfacial interactions in nanostructured polymer-polymer blends. Nanosystems, nanomaterials, nanotechnologies, 2012, 10: 687–699.https://www.imp.kiev.ua/nanosys/media/pdf/2012/4/nano_vol10_iss4_p0687p0700_2012.pdf (In Ukrainian).
14. Malysheva T.L., Golovan S.V., Novichenko V.M. Peculiarities of intermolecular structure of polyvinylchloride—polyurethane elastomers blends. Ukrainskiy Khimicheskiy Zhurnal, 2011, 77: 119–124. http://dspace.nbuv.gov.ua/handle/123456789/187291 (in Ukrainian).
15. Malysheva T.L. Investigating the modification of a polyurethane elastomer with vinyl chloride polymers. International Polym. Sci. Technol., 2014, 41: 4–7. https://doi.org/10.1177/0307174X1404100708.
16. Malysheva T.L., Golovan S.V, Klymchyk D.A. An influence of isocyanate structure of poly(urethane-urea) hard segments on the interfacial interactions with poly(vinyl chloride) Polimernyi Zhurnal, 2012, 34, 1: 29–36. http://nbuv.gov.ua/UJRN/Polimer_2012_34_1_8. (In Ukrainian).
17. Malysheva T.L., Golovan S.V., Klimchuk D. A. An influence of isomerism of aromatic chain extender of poly(urethane-urea)s hard segments on a compatibility with poly(vinyl chloride). Polimernyi Zhurnal, 2012, 34, 3: 241–245. http://jnas.nbuv.gov.ua/article/UJRN-0000508923 (in Ukrainian).
18. Xiao F., Shen D., Zhang X., Hu S., Xy M. Studies on the morphology of blends of poly(vinyl chloride) and segmented polyurethanes. Polymer, 1987, 28: 2335–2345. https://doi.org/10.1016/0032-3861(87)90396-X.
19. Маlysheva T.L., Tolstov A.L., Gres E.V. Miscibility of the polyurethane elastomer with poly(vinyl chloride). Polimernyi Zhurnal, 2019, 41, 2: 96–100. https://doi.org/10.15407/polymerj.41.02.096 (in Ukrainian).
20. Fox T.G. Influence of dіluent and copolymer composition on the glass transition temperature of a polymer system. Bull. Am. Phys. Soc., 1956, 1: 23–128.
21. Kwei T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett., 1984, 22: 307–313. https://doi.org/10.1002/pol.1984.130220603.
22. Маlysheva T.L., Tolstov A.L. Miscibility of poly(urethane-urea) elastomers with chlorinated poly(vinyl chloride). Polimernyi Zhurnal, 2021, 43, 1: 19–25. https://doi.org/10.15407/polymerj.43.01.019 (in Ukrainian).
23. Ullmann’s Polymers and Plastics: Products and Processes. Amsterdam: Wiley-VCH, 2016. – 1934 p.