2024 (2) 7
https://doi.org/10.15407/polymerj.46.02.135
Development and research of composite materials with dacarbazine based on polyurethane-urea with fragments of polyvinyl alcohol-polyethylene glycol graft copolymer in the structure
Tetiana Vislohuzova* (ORCID: 0000-0002-4071-4329), Rita Rozhnova** (ORCID: 0000-0003-3284-3435), Tetiana Kiselova (ORCID: 0000-0001-5606-6904), Galyna Kozlova (ORCID: 0000-0001-8114-4812)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
*e-mail: rudenchyk@gmail.com
**e-mail: rozhnovarita@gmail.com
Polym. J., 2024, 46, no. 2: 135-144.
Section: Medical polymers.
Language: Ukrainian.
Abstract:
Based on diisocyanate prepolymer (DPP), the series of polyurethane-urea (PUU) with fragments of polyvinyl alcohol-polyethylene glycol (PVA-PEG) graft copolymer and 4,4’-diaminodiphenylmethane (DADPh) macrochain extender in the structure at different molar ratios of DPP:DADPh:PVA-PEG (1.0:0.7:0.3; 1.0:0.8:0.2; 1.0:0.9:0.1) were synthesized. Composite materials with the drug dacarbazine (DAС) in the amount of 1.0 wt.% based on the obtained PUU were developed. Studies of the structure and properties of PUU and composite materials with DAC based on them were carried out. The immobilization of DAC was found to be due to intermolecular hydrogen bonds by means of IR spectroscopy. According to the results of physical-mechanical tests, the introduction of DAC into the composition of PUU causes a non-significant decrease in the physical-mechanical properties, which is probably associated with a decrease in the packing density of macrochains of the polymer matrix. According to DSC, the studied systems are single-phase with a glass transition temperature (Tg) ranging from -12.50 to -31.99 °C. The introduction of DAC into the composition of PUU causes an increase in Tg and the specific heat capacity at the values of the glass transition temperature, which can be caused by a change in chain mobility due to the introduction of the filler and is correlated with the data of physical-mechanical tests. According to the results of hydrophilicity studies the introduction of PVA-PEG graft-copolymer into the PUU structure and increasing its content leads to an increase in hydrophilicity, which will contribute to a prolonged release of DAC from the polymer matrix. Therefore, the obtained composites with DAC are promising materials that can be used in medical practice as biologically active polymeric materials with a prolonged effect of an anticancer drug.
Key words: polyurethane-urea, polyvinyl alcohol-polyethylene glycol graft-copolymer, composite material, dacarbazine, hydrophilicity.
REFERENCES
1. Pivec T., Smole M.S., Gašparič P., Stana Kleinschek K. Polyurethanes for Medical Use. Tekstilec, 2017, 60, 3: 182–197. https://doi.org/10.14502/Tekstilec2017.60.182-197.
2. Liu X., Niu Y., Chen K.C., Chen S. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Materials Science and Engineering: C. 2017, 71: 289–297. https://doi.org/10.1016/j.msec.2016.10.019.
3. Pat. 4886866 USA. С08G 18/10. Contact lenses based on biocompatible polyurethane and polyurea-urethane hydrated polymers. J.A. Braatz, C.L. Kehr. Рubl. 12.12.1989.
4. Burke A., Hasirci N. Polyurethanes in Biomedical Applications. Advances in Experimental Medicine and Biology, 2004, 553: 83–101. https://doi.org/10.1007/978-0-306-48584-8_7
5. Caracciolo P.C., de Queiroz A.A.A., Higa O.Z., Buffa F., Abraham G.A. Segmented poly(esterurethane urea)s from novel urea–diol chain extenders: Synthesis, characterization and in vitro biological properties. Acta Biomaterialia, 2008, 4, 4: 976–988. https://doi.org/10.1016/j.actbio.2008.02.016.
6. Kondyurin A., Romanova V., Begishev V., Kondyurina I., Günzel R., Maitz M.F. Crosslincked polyurethane coating on vascular stents for enhanced x-ray contrast. Journal of Bioactive and Compatible Polymers, 2005, 20: 77–93. https://doi.org/10.1177/0883911505049896.
7. Niaounakis M. Biopolymers: Applications and Trends. Elsevier: William Andrew, 2015: 604. ISBN: 9780323353991. eBook ISBN: 9780323354332.
8. Pat. 2013178229 WO. D 04 H 1/728, A 61 L 31/14, D04H 3/04. Biodegradable non-woven mesh with gluepoints. M.R. Gallego, J.V.A. Vange. Рubl. 05.12.2013.
9. Zieleniewska M., Auguscik M., Prociak A., Rojek P., Ryszkowska J. Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Polymer Degradation and Stability, 2014, 108: 241–249. https://doi.org/10.1016/j.polymdegradstab.2014.03.010.
10. Hernández-Córdova R., Mathew D.A., Balint R., Carrillo-Escalante H.J., Cervantes-Uc J.M., Hidalgo-Bastida L.A., Hernández-Sánchez F.. Indirect three-dimensional printing: a method for fabricating polyurethane-urea based cardiac scaffolds. Journal of Biomedical Materials Research, 2016, 104 (8): 1912−1921, https://doi.org/10.1002/ jbm.a.35721.
11. Mazur L.M., Rozhnova R.A., Drozdova V.I., Galatenko N. A. The synthesis of the new drug form with amizonum based on hydrophilic block-copolyurethane containing the copolymer of N-vinylpyrrolidone and vinyl alcohol. Polimernyi Zhurnal, 2007, 29, 1: 58–66.
12. Rozhnova R., Karpenko O., Rudenchyk T., Galatenko N., Kiselova T. Synthesis film materials with decametoxine on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinylalcohol. NaUKMA Research Papers, 2016, 183: 54–59.
13. Rudenchyk T., Rozhnova R., Galatenko N., Nechaeva L. Study of biodegradation of film materials with D-cycloserine based on polyurethaneurea and the dynamics of drug release. American Journal of Polymer Science and Technology, 2019, 5, 4: 97–104. https://doi.org/10.11648/j.ajpst.20190504.11.
14. Rudenchyk T. V., Roznova R.A., Galatenko N.A., Kiselova T.O. Film materials with tiamulin fumarate on the basis of polyurethaneureas, which containing in the structure fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol. Odesa National University Herald. Chemistry, 2016, 21, 3(59): 67–76. https://doi.org/10.18524/2304-0947.2016.3(59).79591.
15. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Narazhaiko L.F. Biocompatible composites with lysozyme based on polyurethane urea with N-vinyl pyrrolidone copolymer fragments, vinyl acetate and vinyl alcohol. Odesa National University Herald. Chemistry, 2018, 23, 2(66): 46–56. https://doi.org/10.18524/2304-0947.2018.2(66).132042.
16. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A. Kiselova T.О. Development of composite materials based on polyurethane urea with fragments of a copolymer of N- vinylpyrrolidone with vinyl alcohol and lysozyme. Voprosy Khimii i Khimicheskoi Tekhnologii, 2018, 2: 115–121. http://vhht.dp.ua/wp-content/uploads/pdf/2018/2/Stashenko.pdf.
17. Stashenko K.V., Rudenchyk T.V., Galatenko N.A., Rozhnova R.A. Synthesis and properties of composite materials based on polyurethane urea with fragments of polyvinyl butyral copolymer (vinyl acetate with vinyl alcohol) and lysozyme. Voprosy Khimii i Khimicheskoi Tekhnologii, 2020, 1: 71–79 https://doi.org/10.32434/0321-4095-2020-128-1-71-79.
18. Stashenko K.V., Vislohuzova T.V., Galatenko N.A., Rozhnova R.A. Development of composite materials based on polyurethane urea with fragments of a copolymer of Poly(vinyl butyral, vinyl acetate and vinyl alcohol) and lysozyme. Polimernyi Zhurnal, 2020, 42, 2: 136–143. https://doi.org/10.15407/polymerj.42.02.136.
19. Stashenko K.V., Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Nechaeva L.Yu. Study of the influence of the model biological environment on the structure and properties of polyurethane ureas with lysozyme, which contain fragments of copolymer of vinyl butyral, vinyl acetate and vinyl alcohol in the structure. Polimernyi Zhurnal, 2019, 41, 3: 198–205. https://doi.org/10.15407/polymerj.41.03.198.
20. Vislohuzova T.V., Galatenko N.A., Rozhnova R.A., Bogatyrov V.M., Galaburda M.V. Composite materials based on polyurethane with fragments of poly(vinyl butyral-vinyl acetate-vinyl alcohol) copolymer in their structure filled with silver- and copper-containing silica. Chemistry, Physics and Technology of Surface, 2022, 13, 3: 274–288. https://doi.org/10.15407/hftp13.03.274.
21. Vislohuzova T.V., Kuliesh D.V., Rozhnova R.A., Galatenko N.A., Narazhayko L.F. Study of biocompatibility of composite materials filled with silver-containing silica nanocomposite. Bulletin of problems biology and medicine, 2022, 2: 12–13. https://doi.org/10.29254/2077-4214-2022-3-166-460-471.
22. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the safety of polyvinyl alcohol-polyethylene glycol-graft-co-polymer as a food additive. European Food Safety Authority, 2013, 11, 8:3303. https://doi.org/10.2903/j.efsa.2013.3303.
23. Janssens S., Novoa de Armas H., Remon J.P., Van den Mooter G. The use of a new hydrophilic polymer, Kollicoat IR®, in the formulation of solid dispersions of Itraconazole. Еuropean journal of pharmaceutical sciences, 2007, 30, 3-4: 288–294. https://doi.org/10.1016/j.ejps.2006.11.015.
24. Fussnegger B., Tawde V., Chivate A., Kolter K., Ali S. Kollicoat® IR: Minimizing the Risks for Oxidative Degradation of Drugs. Journal of Analytical & Pharmaceutical Research, 2016, 2, 3: 00020. https://doi.org/10.15406/japlr.2016.02.00020.
25. Muschert S., Siepmann F., Leclercq B., Carlin B., Siepmann J. Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 1: 130–37. https://doi.org/10.1016/j.ejpb.2008.12.007.
26. Siepmann F., Hoffmann A., Leclercq B., Carlin B., Siepmann J. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. Journal of Controlled Release, 2007, 119, 2: 182–189. https://doi.org/10.1016/j.jconrel.2007.02.003.
27. Fouad E.A., El-Badry M., Neau S.H., Alanazi F.K., Alsarra I.A. Technology evaluation: Kollicoat IR. Expert Opinion on Drug Delivery, 2011, 8, 5: 693–703. https://doi.org/10.1517/17425247.2011.566266.
28. Liu P., Li J., Liu J., Yang J., Fan Y. Release Behavior of Tanshinone IIA Sustained-Release Pellets Based on Crack Formation Theory. Journal of Pharmaceutical Sciences, 2012, 101, no. 8: 2811–2820. https://doi.org/10.1002/jps.23199.
29. Pat. 20150132251 USA. A 61 L 31/06. Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions. K.L. Fujimoto, J. Guan, B.B. Keller, K. Tobita, W.R. Wagner. Рubl. 14.05.2015.
30. Hervieu A., Re´be´ C., Ve´gran F., Chalmin F., Bruchard M., Vabres P., Apetoh L., Ghiringhelli F., Mignot G. Dacarbazine-Mediated Upregulation of NKG2D Ligands on Tumor Cells Activates NK and CD8 T Cells and Restrains Melanoma Growth. Journal of Investigative Dermatology, 2013, 133, 2: 499–508. https://doi.org/10.1038/jid.2012.273.
31. Quirin C., Mainka A., Hesse A., Nettelbeck D.M. Combining adenoviral oncolysis with temozolomide improves cell killing of melanoma cells. International journal of cancer, 2007, 121, no. 12: 2801–2807. https://doi.org/10.1002/ijc.23052.
32. Jiang G., Li R-H., Sun C., Liu Y-Q., Zheng J-N. Dacarbazine Combined Targeted Therapy versus Dacarbazine Alone in Patients with Malignant Melanoma: A Meta-Analysis. PLoS ONE, 2014, 9(12): e111920. https://doi.org/10.1371/journal.pone.0111920.
33. Eggermont A.M., Kirkwood J.M. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? European Journal of Cancer, 2004, 40, 12: 1825–1836. https://doi.org/10.1016/j.ejca.2004.04.030.
34. Middleton M.R., Grob J.J., Aaronson N., Fierlbeck G., Tilgen W., Seiter S., Gore M., Aamdal S., Cebon J., Coates A., Dreno B., Henz M., Schadendorf D., Kapp A., Weiss J., Fraass U., Statkevich P., Muller M., Thatcher N. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. Journal of Clinical Oncology, 2000, 18, 1: 158–166. https://doi.org/10.1200/JCO.2000.18.1.158.
35. Ugurel S., Paschen A., Becker J.C. Dacarbazine in Melanoma: From a Chemotherapeutic Drug to an Immunomodulating Agent. Journal of Investigative Dermatology, 2013, 133, no. 2: 289–292. https://doi.org/10.1038/jid.2012.341.
36. Fabulyak F.G. Molekuliarnaia podvizhnost polimerov v poverkhnostnyh sloiah. Kiev: Nauk. dumka, 1983: 144.
37. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A., Kiselova T.O. Hydrophilic polyurethane ureas with cycloserine which contain in their structure the fragments of a copolymer of N-vinylpyrrolidone with vinyl alcohol: synthesis and characterization. Voprosy Khimii i Khimicheskoi Tekhnologii, 2017, 5: 49–57. http://vhht.dp.ua/wp-content/uploads/pdf/2017/5/Rudenchyk.pdf.