Uncategorized

  • https://doi.org/10.15407/polymerj.46.01.015

    SYNTHESIS OF COBALT NANOPARTICLES IN AQUEOUS

    SOLUTIONS ASSISTED BY POLYMER/INORGANIC HYBRID

    Nataliya PERMYAKOVA1* (ORCID: 0000-0002-7622-1059), Tatyana ZHELTONOZHSKAYA1 (ORCID: 0000-0001-5272-4244), Dmytro KLYMCHUK2 (ORCID: 0000-0002-7076-8213), Valeriy KLEPKO1 (ORCID: 0000-0001-8089-8305), Liudmyla GRISHCHENKO3 (ORCID: 0000-0002-0342-4859), Arina FOMENKO4, Liudmyla VRETIK4 (ORCID: 0000-0003-3456-7518)
    1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske highway, 02155 Kyiv, Ukraine,

    2M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2 Tereshchenkivska str., 01601 Kyiv, Ukraine,

    3Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, 4g Glushkova av., 03127 Kyiv, Ukraine,

    4Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Department of Macromolecular Chemistry, 60 Volodymyrska str., 01033 Kyiv, Ukraine,

    *e-mail: permyakova@ukr.net
    Polym. J., 2024, 46, no. 1: 15-29.

    Section: Structure and properties.

    Language: English.

    Abstract:

    Hydrophilic polymer/inorganic hybrids (PIH) containing silica nanoparticles and polyacrylamide chains proved to be effective matrices for the in situ synthesis of cobalt nanoparticles. PIH sample was synthesized by free-radical polymerization of acrylamide from the unmodified surface of SiO2 nanoparticles and characterized by elemental analysis, dynamic thermogravimetric analysis, static light scattering, potentiometric titration, viscometry and transmission electron microscopy (TEM). The processes of borohydride reduction of cobalt ions from the Co(NO3)2·6H2O solution to nanoparticles in water medium and aqueous solutions of PIH were studied as a function of the concentrations of metal salt and hybrid concentrations using UV-Vis spectroscopy and TEM. A special approach to characterize the kinetics and efficiency of CoNPs formation in water medium and hybrid solutions using UV-Vis spectroscopy was implemented. The kinetic parameters of the CoNPs formation process as well as the yield, size, and morphology of nanoparticles in hybrid solutions and water medium at various concentrations of metal salt and hybrid were determined. The growth of both concentrations of reagents had a positive effect on the rate of formation of metal nanoparticles and their yield, but in all cases, the reduction process developed much slower in hybrid solutions compared to pure water. The morphology of the CoNPs/PIH nanocomposites was mainly represented by separate swollen hybrid particles containing metal nanoparticles with dav~3 nm.

    Key words: polymer/inorganic hybrid, matrix, in situ synthesis, borohydride reduction, cobalt nanoparticles.

    References

    REFERENCES
    1. Romero-Fierro D., Bustamante-Torres M., Bravo-Plascencia F., Magaña H., Bucio E. Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers, 2022, 14: 2467-2490. https://doi.org/10.3390/polym14122467.
    2. Li X., Sun L., Wang H., Xie K., Long Q., Lai X., Liao L.Synthesis of cobalt nanowires in aqueous solution under an external magnetic field. Beilstein J. Nanotechnol. 2016, 7: 990-994. https://doi.org/10.3762/bjnano.7.91.
    3. Vodyashkin A.A., Kezimana P., Prokonov F.Y., Vasilenko I.A., Stanishevskiy Y.M. Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A Review. Crystals, 2022, 12: 272-298. https://doi.org/10.3390/cryst12020272.
    4. Kaur A., Gangacharyulu D., Bajpai P.K. Catalytic Hydrogen Generation from NaBH4/H2O System: Effects of Catalyst and Promoters. Brazilian Journal of Chemical Engineering, 2018, 35,№1: 131-139. https://doi.org/10.1590/0104-6632.20180351s20150782.
    5. Angeloni L., Passeri D., Schiavi P.G., Pagnanelli F., Rossi M. Magnetic force microscopy characterization of cobalt nanoparticles: A preliminary study. International conference of trends in material science and inventive materials: ICTMIM 2020. https://doi.org/10.1063/5.0023608.
    6. Dzidziguri E.L,Sidorova E.N, Inkar M., Yudin A.G., Kostitsyna E.V., Ozherelkov D.Yu., Slusarsky K.V., NalivaikoA.Yu., Gromov A.A. Cobalt nanoparticles synthesis by cobalt nitrate reduction. Mater. Res. Express, 2019, 6: 105081. https://doi.org/10.1088/2053-1591/ab3ca8.
    7. Zhang Z., Zhou T., Lu M., Poh A.W.C., Piramanayagam S.N. Cobalt Nanomaterials: Synthesis and Characterization. In: Nanotechnologies for the Life Sciences. Edited by Challa S.S.R. Kumar WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2011, 4680 pp.
    8. Anwar A., Numan A., Siddiqui R., Khalid M., Khan N.A. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasites Vectors, 2019, 12: 280-290. https://doi.org/10.1186/s13071-019-3528-2.
    9. Khusnuriyalova A.F., Caporali M., Hey-Hawkins E., Sinyashin O.G., Yakhvarov D.G. Preparation of Cobalt Nanoparticles.Eur. J. Inorg. Chem.,2021, 30: 3023–3047. https://doi.org/10.1002/ejic.202100367.
    10. Hatamie S., Dhole S.D., Ding J., Kale S.N. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages. Journal of Magnetism and Magnetic Materials, 2009, 321, №14: 2135–2138. doi:10.1016/j.jmmm.2009.01.014.
    11. Carrasco-García A., Vali S.A., Ben-Abbou Z., Moral-Vico J., Markeb A.A., Sánchez A. Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenation. Materials, 2024, 17, №3: 697. https://doi.org/10.3390/ma17030697.
    12. Medvedeva O.I., Kambulova S.S., Bondar O.V., Gataulina A.R., Ulakhovich N.A., Gerasimov A.V., Evtugyn V.G., GilmutdinovI. F., Kutyreva M.P. Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix. Journal of Nanotechnology, 2017, 9 p. doi:10.1155/2017/760765.
    13. Arif M. Complete life of cobalt nanoparticles loaded into cross-linked organic polymers: a review. RSC Advances 2022, 12, №24: 15447-15460. https://doi.org/10.1039/D2RA01058E.
    14. Ajmal M., Siddiq M., Al-Lohedan H., Sahiner N. Highly versatile p(MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Adv., 2014, 4, №103: 59562–59570. https://doi.org/10.1039/c4ra11667d.
    15. Farooqi Z.H., Iqbal S., Khan S.R. et al. Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. e-Polymers, 2014, 14: 313-321. https://doi.org/10.1515/epoly-2014-0111.
    16. Zhao Y.-W., Zheng R.K., Zhang X.X., Xiao J.Q. A simple method to prepare uniform Co nanoparticles. IEEE Trans. Magn. 2003, 39: 2764–2766. https://doi.org/10.1109/TMAG.2003.815592.
    17. Kamal T., Khan S.B., Haider S., Alghamdi Y.G., Asiri A.M. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 2017, 104: 56–62. https://doi.org/10.1016/j.ijbiomac.2017.05.157.
    18. Chairam S., Jarujamrus P., Amatatongchai M. Starch hydrogel-loaded cobalt nanoparticles for hydrogen production from hydrolysis of sodium borohydride. Advances in Natural Sciences: Nanoscienc and Nanotechnology, 2019, 10, no. 2: 025013. https://doi.org/10.1088/2043-6254/ab23fb.
    19. Lisiecki I., Pileni M. P. Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles. Langmuir, 2003, 19: 9486–9489. https://doi.org/10.1021/la0301386.
    20. Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem., 2010, 82, №10: 1901–1917. https://doi.org/10.1351/PAC-CON-09-10-22.
    21. Gordon J.E. Solution Chemistry: The Organic Chemistry of Electrolyte Solutions. Wiley-Interscience, New York, 1975, 554 pp.
    22. Sari N., Kahraman E., Sari B. Synthesis of Some Polymer-Metal Complexes and Elucidation of their Structures. J. Macromol. Sci., Part A: Pure Appl. Chem., 2006, 43, no. 8: 1227–1235. https://doi.org/10.1080/10601320600737484.
    23. Lou X., Chen M., Hu B. The effect of Nitrogen and Oxygen Coordination: Toward a Stable Anode for Reversible Lithium Storage. New J. Chem., 2018, https://doi.org/10.1039/c8nj03367f.
    24. Girma K.B., Lorenz V., Blaurock S., Edelmann F.T. Coordination Chemistry of Acrylamide: 1. Cobalt(II) Chloride Complexes with Acrylamide – Synthesis and Crystal Structures. Z. Anorg. Allg. Chem., 2005, 631, no. 8: 1419–1422. https://doi.org/10.1002/zaac.200500027.
    25. Girma K.B., Lorenz V., Blaurock S., Edelmann F.T. Coordination Chemistry of Acrylamide 4. Crystal Structures and IR Spectroscopic Properties of Acrylamide Complexes with CoII, NiII, and ZnII nitrates. Z. Anorg. Allg. Chem., 2005, 631, no. 10: 1843–1848. https://doi.org/10.1002/zaac.200500210.
    26. Chen X., Wang L., Li Q., Zhang J., Wang J., Sun J., Zhang Y. Reversible-deactivation radical polymerizations of acrylamide mediated by cobalt complexes supported by amino-bis(phenolate) ligands. Journal of Macromolecular Science, 2020, Part A, 8 p. https://doi.org/10.1080/10601325.2019.1691453.
    27. Foley K., Condes L., Walters K.B. Influence of metal-coordinating comonomers on the coordination structure and binding in magnetic poly(ionic liquid)s. Mol. Syst. Des. Eng., 2023, 8: 1402. https://doi.org/10.1039/d3me00076a.
    28. Zheltonozhskaya T., Permyakova N., Kondratiuk T., Beregova T., Klepko V., Melnik B. Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukrainian Journal of Chemistry, 2019, 7, no. 2: 20-39. https://doi.org/10.17721/fujcV7I2P20-39.
    29. Zheltonozhskaya T.B., Permyakova N.M., Kravchenko O.O., Maksin V.I., Nessin S.D., Klepko V.V., Klymchuk D.O. Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polym.-Plast. Technol. Mater, 2020, 59: 1-23. https://doi.org/10.1080/25740881.2020.1811318.
    30. Zheltonozhskaya T.B., Permyakova N.M., Klepko V.V., Grishchenko L.M., Klymchuk D.O. Highly dispersed nanocomposites based on polymer/inorganic hybrids and nickel nanoparticles: the role of the matrix structure in the process of formation. Polimernyi Zhurnal, 2023, 45, no. 1: 37–55. https://doi.org/10.15407/polymerj.45.01.037.
    31. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley-Interscience, 1979, 896 pp.

  • https://doi.org/10.15407/polymerj.45.04.299

    STUDY OF THE EFFECTIVENESS OF THE INFLUENCE OF PLASTICIZERS AND FUNCTIONAL ADDITIVES IN THE RECEIVING OF THERMOPLASTIC STARCH ON ITS FILM-FORMING AND DESTRUCTIVE PROPERTIES

    T.V. Dmytrieva,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0002-3526-8395

    S.K. Krymovska,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0002-9723-4633

    G.E. Glieva,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0002-2916-0257

    V.I. Bortnytskyi,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0003-4954-6533

    S.V. Riabov,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske Shose, Kyiv, 02155, Ukraine,
    e-mail: imcnasusr@ukr.net
    ORCID: 0000-0003-2996-3794

    Polym. J., 2023, 45, no. 4: 299-305.

    Section: Structure and properties.

    Language: Ukrainian.

    Abstract:

    A literature review on the production of thermoplastic starch (TPS) with various plasticizing additives as a component of biodegradable polymer compositions was conducted. Plasticizing additives with different functional groups, due to which starch modification occurs, were analyzed. In order to expand the spectrum of functional additives for the formation of TPS, the introduction of acids with different amounts of carboxyl groups: citric, oxalic, oleic, stearic was studied. The technological parameters of thermomechanical processing of starch compositions and the quantitative composition of the components are determined. Physical and mechanical tests of strength and elasticity of film samples of TPS compositions and compatible with synthetic polymer were carried out. In order to obtain the structural characteristics of TPS and TPS films with polyethylene, studies were carried out by IR-Fourier spectroscopy and mass spectrometry. Studies of the effect of UV irradiation on the degradability of TPS compositions after exposure in a climate chamber for 90 days were conducted. It was found that the loss of strength and elasticity of TPS and TPS+PE film samples is (82–90)%, elasticity (60–70)%, depending on plasticizing and structure-forming additives and their amounts.

    Keywords: thermoplastic starch, structure-forming additives, film formation.

    References

    1. Estrada – Monje A., Alonso-Romero S., Zitzumbo-Guzman R., Estrada-Moreno I.A., Zaragoza-Contreras E.A. Thermoplastic Starch – Based Blends with Improved Thermal and Thermomechanical Properties. Polymers, 2021, no.13: 4263 – 4276. https://doi.org/10.3390/polym13234263.
    2. Zhai X., Wang W., Zhang H., Dai Y., Dong H., Hou H. Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydrate Polymers, 2020: 239. https://doi.org/10.1016/j.carbpol.2020.116231.
    3. Phothisarattana D., Wongphan P., Promsorn J., Harnkarnsujarit N.. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids and Surfaces B: Biointerfaces, 2022: 214. https://doi.org/10.1016/j.colsurfb.2022.112472.
    4. Wongphan P., Panrong T., Harnkarnsujarit N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packaging and Shelf Life. 2022, 32: 100844. https://doi.org/10.1016/j.fpsl.2022.100844.
    5. Klinmalai P., Srisa A., Laorenza V., KatekhongW., Harnkarnsujarit N. Antifungal and plasticization effects of carvacrol in biodegradable polylactic acid and PBAT blend films for bakery packaging. LWT. 2021, 152: 112356 https://doi.org/10.1016/j.lwt.2021.112356.
    6. Katekhong W., Wongphan P., Klinmalai P., Harnkarnsujarit N. Termoplasttic starch blown films functionalized by plasticized nitrit blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chem. 2022; 374: 131709. https://doi.org/10.1016/j.foodchem.2021.131709.
    7. Dahiru Adamu Ajiya, Suzi Salwah Jikan, Balkis Haji A.Talip, Nur Azam Badarulzaman, Matias – Peralta, Darfizzi Derawi, Shehu Yahaya. The Influence of Glycerol on Mechanical, Thermal and Morphological Properties of Thermoplastic Tapioca Starch Film. Journal of Science and Technology. 2017, 9, no. 4: 24–29. https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/2054.
    8. Lukin N.D., Аnаnеv V.V., Kоlpаkоvа V.V., Usаchеv I.S., Sаrdzhvеlаdzе А.S., Sdоbnikоvа О.А., Sоlоmin D.А., Lukin D.N. Biоlоgicheski rаzrushаеmаya tеrmоplаstichnаya kоmpоzitsiia. Pаtent RF 2645677 С1. Opubl. 27.02.2018. Bul. no. 6.
    9. Vаsilеv I.Yu., Аnаnеv V.V., Коlpаkоvа V.V., Sаrdzhvеlаdzе А.S. Rаzrаbоtkа tеhnоlоgii pоluchеniia biоrаzlаgаyеmykh kоmpоzitsiy nа оsnоvе pоlietilеnа, krаkhmаlа i mоnоglicеridоv. Fine Chemical Technologies. 2020, no 15: 44–55.
    10. Коlpаkоvа V.V., Usаchеv I.S, Sоlоmin D.А. Biоrаzlаgаеmyе pоlimеry: sоstаvnyе biоkоmpоnеnty i tеkhnоlоgichеskiе rеshеniya prоizvоdsтtvа. Pishchеvаia prоmyshlеnnоst. 2019, no. 12: 51–57. https://doi.org/10.1055/a-0881-0918.
    11. Pаt. 11518860 В1 US. Biodegradable and waterproof shaped articles based on thermoplastic starch with lower retrogradation and improved mechanical properties. 2022.
    12. Pаtent WO 2019/138022 A1. Thermoplastic starch. Opubl. 18.07.2019.
    13. Bishkо M.V., Sеmіnskij О.О., Zubrіj О.G. Influence of plastificer selection on starch based polymer properties Bulletin of National Technical University of Ukraine ”Igor Sikorsky Kyiv Polytechnic Institute” Series ”Chemical Engineering Ecology and Resource Saving”. 2022, no 1: 9 -19. https://doi.org/10.20535/2617-9741.1.2022.254154.
    14. Keydis Martinez Villadiego, Mary Judith Arias Tapia, J.Useche, Daniela Escobar Macias. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. Journal of Polymers and the Environment. 2022, 30: 75-91 https://doi.org/10.1007/s10924-021-02207-1.
    15. Palai B., Biswal M., Mohanty S., Nayak S. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends: synthesis and evaluation of extrusion blown films thereof. Industrial Crops and Products. 2019, 1 December, 14: 111748. https://doi.org/10.1016/j.indcrop.2019.111748.
    16. Aarsha Surendren, Amar K. Mohanty, Qiang Liu, Manjusri Misra. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chemistry. 2022, no 24: 8606 – 8636. https://doi.org/10.1039/D2GC02169B.
    17. Rеchun О.Yu., Тkаchuk V.V. Use of biodegradable polymers and antimicrobial packaging materials in food packaging. Тоvаrоznаvchyi vіsnyk. 2022, 15: 274-285. https://doi.org/10.36910/6775-2310-5283-2022-15-24.
    18. Коlpаkоvа V.V., Sаrdzhvеlаdzе А.S. Pаpаhin А.А., Bоrоdinа Z.М., Vаsilеv I.Yu., Аnаnеv V.V. Biоlоgichеski rаzrushаеmаia tеrmоplаstichnаia kоmpоzitsiia. Pаtent RF 2761830 С . Opubl. 22.04.2021. Bul. no.12.
    19. Sоvа N.V., Sаvchеnkо B.М., Plаvаn V.P., Bіlоshеnkо V.О. Some ways to create environmentally safe polymer packaging in Ukraine. Upakovka. 2017, no 5: 31 – 34.

  • https://doi.org/10.15407/polymerj.44.04.304

    THE STUDY OF INTERMOLECULAR INTERACTIONS IN THE POSS-CONTAINING NANOCOMPOSITES BASED ON POLYURETHANE AND POLYURETHANE/POLY(HYDROXYPROPYL METHACRYLATE) MATRICES

    L.V. Karabanova,

    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0002-5909-0042

    L.A. Honcharova,
    Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0003-2529-9945
    N.A. Busko,

    Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,

    ORCID: 0000-0001-9831-6748

    S.M. Ostapiuk,
    Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
    ORCID: 0000-0001-8436-9080
    Polym. J., 2022, 44, no. 4: 304-315.

    Section: Polymer synthesis.

    Language: Ukrainian.

    Abstract:

    The nanocomposites based on polyurethane matrix and multicomponent polymer matrices consisting of polyurethane and poly(hydroxypropyl methacrylate) with different contents of the last, and 1,2-propanediolisobutyl polyhedral oligomeric silsesquioxane (1,2-propanediolisobutyl-POSS), which was used as a functionalized nanofiller, were synthesized. The influence of the content of 1,2-propanediolisobutyl-POSS on intermolecular interactions and structural features of the nanocomposites was investigated by the method of IR-spectroscopy with Fourier transformation and attenuated total reflection (FTIR-ATR). The study of thermal curing of the model system, which consists of the adduct of trimethylolpropane with toluene diisocyanate and 1,2-propanediolisobutyl-POSS, made it possible to conclude that 1,2-propanediolisobutyl-POSS participates in the reaction of urethane formation using of one of the terminal hydroxyl groups, and it is incorporated into the polymer chain between cross-linking of  polyurethane networks. The investigation of multicomponent polymer matrices by FTIR-ATR spectroscopy was done and was shown that photopolymerization of second polymer poly(hydroxypropyl methacrylate) in the matrix of polyurethane was completed by the opening of a double bond and the formation of a linear polymer in the composition of semi-IPN. Studies of nanocomposites based on  multicomponent polymer matrices consisting of polyurethane and poly(hydroxypropyl methacrylate) with 15 and 30 % of the last by FTIR-ATR spectroscopy demonstrated the presence of POSS in the nanocomposites and the influence of POSS content on the structure of the studied systems and on the degree of phase separation. The POSS is “embedded” into the polymer chain between cross-linking of the polyurethane networks, with the additional formation of a complex system of intermolecular hydrogen bonds between the carboxyl and amine components of urethane groups in the nanocomposites.

    Key words: nanocomposites, 1,2-propanediolisobutyl-POSS, polyurethane, poly(hydroxypropyl methacrylate), semi-interpenetrating polymer networks, FTIR-ATR spectroscopy.

    REFERENCES
    1. Liu S., Guo R., Li C., Lu C., Yang G., Wang F., Nie J., Ma C., Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. European Polymer Journal, 2021, 143, 110180. https://doi.org/10.1016/j.eurpolymj.2020.110180.
    2. Zhang W., Camino G., Yang, R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 2017, 67: 77–125. https://doi.org/10.1016/j.progpolymsci.2016.09.011.
    3. Lungu A., Cernencu A. I., Vlasceanu G. M., Florea N. M., Ionita M., Iovu H. 3D POSS cages decorated 2D graphenic sheets: A versatile platform for silicon-carbonaceous nano-additives design. Composites Part B: Engineering, 2021, 207, 108578. https://doi.org/10.1016/j.compositesb.2020.108578.
    4. Raftopoulos K. N., Pielichowski K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–187. https://doi.org/10.1016/j.progpolymsci.2015.003.
    5. Blanco I. Decomposition and ageing of hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 415–462. https://doi.org/10.1007/978-3-030-02327-0_13.
    6. Ramachandran S., Muthukaruppan A. Porous hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 255–297. https://doi.org/10.1007/978-3-030-02327-0_8.
    7. Pracella M. Polyolefins with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 129 namics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–166. https://doi.org/10.1007/978-3-030-02327-0_4.
    8. Kausar A. Design and synthesis of hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 27–44. https://doi.org/10.1007/978-3-030-02327-0_2.
    9. Wang F., Wu Y., Huang Y., Liu L. Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Comp. Sci. Tech., 2018, 156: 269–275. https://doi.org/10.1016/j.compscitech.2018.016.
    10. Kazemi F., Mir Mohamad Sadeghi G., Kazem H.R. Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory polyurethane-POSS nanocomposites. European Polymer Journal, 2019, 114: 446–451. https://doi.org/10.1016/j.eurpolymj.2018.12.041.
    11. Hebda E., Pielichowski K. Polyurethane/POSS hybrid materials. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 167–204. https://doi.org/10.1007/978-3-030-02327-0_5.
    12. Rao Y. Engineering of interface in nanocomposites based on PU polymers. Polyurethane
    Polymers, 2017: 73–133. https://doi.org/10.1016/b978-0-12-804065-2.00003-6.
    13. Romo-Uribe A. Viscoelasticity and microstructure of POSS-methyl methacrylate nanocomposites. Dynamics and entanglement dilution. Polymer, 2018, 148, 27–38. https://doi.org/10.1016/j.polymer.2018.06.01.
    14. Joshi M., Adak B., Butola B. S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Progress in Materials Science, 2018, 97: 230–282. https://doi.org/10.1016/j.pmatsci.2018.05.001.
    15. Zhao H., She W., Shi D., Wu W., Zhang Q., Li R. K. Y. Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility. Composites Part B: Engineering, 2019, 107441. https://doi.org/10.1016/j.compositesb.2019.107.
    16. Çakmakçi E. POSS—Thermosetting polymer nanocomposites. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites, 2021: 127–175. https://doi.org/10.1016/B978-0-12-821347-6.00004-4.
    17. Wu W., Zhao W., Gong X., Sun Q., Cao X., Su Y., Yu B., Li R.K.Y., Vellaisamy R. A. L. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. Journal of Materials Science & Technology, 2022, 101: 107–117. https://doi.org/10.1016/j.jmst.2021.05.060.
    18. Madbouly S. A., Otaigbe J. U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 2009, 34(12): 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002.
    19. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31(2): 137–143 [in Ukrainian].
    20. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001.
    21. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50–56. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.025.
    22. Wei K., Wang L., Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491–1501. https://doi.org/10.1039/c2py20930f.
    23. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016.
    24. Karabanova L.V., Honcharova L.А., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7 (4): 413–420. https://doi.org/10.15407/hftp07.04.413.
    25. Karabanova L.V., Honcharova L.A., Shtompel V.I. Nanocomposites based on polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities. Polym. J. (Ukr.), 2020, 42(2): 85–95 [in Ukrainian]. https://doi.org/10.15407/polymerj.42.02.085.
    26. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50(24): 5749–5757. https://doi.org/10.1016/j.polymer.2009.05.037.
    27. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Materials Chemistry and Physics, 2009, 117(1): 91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006.
    28. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P. T. Thermally modulated nanostructure of poly(ε-caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54(13): 3350–3362. https://doi.org/10.1016/j.polymer.2013.04.015.
    29. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int., 2004, 53(12): 2051–2058. https://doi.org/10.1002/pi.1627.
    30. Bellamy L.J. The infrared spectra of complex molecules, v. II. Advances in infrared group frequencies. 2nd ed. Chapman and Hall, London: Methuen, 1980: 299. https://trove.nla.gov.au/version/12064222.
    31. Wamke A., Dopierała R., Prochaska K., Maciejewski H., Biadasz A., Dudkowiak A. Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Col Surf A, 2015, 464:110–120. https://doi.org/10.1016/j.colsurfa.2014.10.022.
    32. Jerman I., Koželj M., Orel B. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells, 2010, 94(2): 232–245. https://doi.org/10.1016/j.solmat.2009.09.008.
    33. Maoz R., Sagiv J., Degenhardt J., Möhwald H., Quint P. Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infrared spectroscopy and X-ray scattering techniques. Supramol. Sci., 1995, 2(1): 9–24. https://doi.org/10.1016/0968-5677(96)85635-5.
    34. Dittmar U., Hendan B.J., Florke U., Marsmann H.C. Funktionalisierte octa-(propylsilsesquioxane) (3-XC3H6)8(Si8O12) modellverbindungen für oberflächenmodifizierte kieselgele. J. Organomet. Chem., 1995, 489(1–2): 185–194. https://doi.org/10.1016/0022-328X(94)05100-P.
    35. Moon J.H., Seo J.S., Xu Y., Yang S. Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem., 2009, 19(27): 4687–4691. https://doi.org/10.1039/b901226e.
    36. Janowski B., Pielichowski K. Nanohybrid polyurethane/functionalized silsesquioxane systems. Part I. Structural investigations using FT-IR and NMR methods. Polymery (Polska), 2012, 57(7–8): 518–528.
    37. Lipatov Yu.S., Shilov V.V., Gomza Yu.P., Kruglyak N.E. Rentgenograficheskiye sposoby issledovaniya polimernykh sistem. Kyiv: Naukova Dumka, 1982: 296.
    38. Raftopoulos K.N., Pandis C., Apekis L., Pissis P., Janowski B., Pielichowski K., Jaczewska J. Polyurethane–POSS hybrids: Molecular dynamics studies. Polymer, 2010, 51(3): 709–718. https://doi.org/10.1016/j.polymer.2009.11.06.
    39. Mattia J., Painter P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules, 2007, 40(5), 1546–1554. https://doi.org/10.1021/ma0626362.
    40. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29(3): 177–182 [in Russian].
    41. Karabanova L.V., Whitby R.L., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291(3): 573–583. https://doi.org/10.1007/s00396-012-2745-4.
    42. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72(8): 865–872. https://doi.org/10.1016/j.compscitech.2012.02.008.
    43. Pielichowski K., Njuguna J., Janowski B., Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv. Pol. Sci., 2006, 201(1): 225–296. https://doi.org/10.1007/12_077.
    44. Chang Z., Zhang M., Hudson A. G., Orler E. B., Moore R. B., Wilkes G. L., Turner S. R. Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer, 2013, 54(26): 6910–6917. https://doi.org/10.1016/j.polymer.2013.10.02.

  • 2016, №3 Journal was published.

    Journal contents