2016 (3) 6

https://doi.org/10.15407/polymerj.38.03.225

Biocompatible nanocomposites based on polyurethane-poly(2-hydroxyethyl methacrylate) matrix and filler modified by biologically active amino acid glycine: structure and thermodynamics of interactions

 

L.V. Karabanova, Yu.P. Gomza, S.D. Nesin, O.M. Bondaruk, E.F. Voronin, L.V. Nosach

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02660, Ukraine; BondarukOksanaM@i.ua

Chuiko Institute of Surface Chemistry NAS of Ukraine

17, General Naumov str., Kyiv, 03680, Ukraine

 

Polym. J., 2016, 38, no. 3: 225-235.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The biocompatible nanocomposites based on polyurethane, poly(2-hydroxyethyl methacrylate) (РНЕМА) and nanosilica modified by biologically active amino acid glycine are synthesized. The structure of the created nanocomposites was investigated by small-angle X-ray scattering. The dependence of the characteristics from the content of polymer matrix’s components and nanofiller concentration was detected. The thermodynamic parameters of interaction between polymer matrix and nanofiller during formation of the nanocomposites were investigated.It was shown that the free energy of mixing of polyurethane, PHEMA and semi-IPNs with filler is negative for systems with low content of PHEMA, and thus the energy is released during process of the nanocomposites formation, and dence, durable polymer layers on the surface of nanofiller are formed. With increasing the PHEMA content the free energy of mixing moves to the positive value, which is the result of competition of two processes: the formation of dense surface layers on the surface of the filler, and the formation of interfacial layers with excess free volume.

Key words: nanocomposites, polyurethane, poly(2-hydroxyethyl methacrylate), biologically active substances, glycine, structure, thermodynamics interactions.

 

References

  1. 1. Paul D.R.and Robenson L.M., Polymer, 2008, 49, no.15: 3187-3204.
  2. 2. Jancar J., Douglas J.F., Starr F.W., Kumar S.K., Cassagnau P., Lesser A.J., Sternstein S.S.and Buehler M.J., Polymer, 2010, 51, no. 15: 3321-3343.
  3. 3. Ray S.S. and Okamoto M., Polym. Sci., 2003, 28, no. 11: 1539-1641.
  4. 4. Alexandre M. and Dubois P., Mater Sci. Eng., 2000, 28, no. 1: 1-16.
  5. 5. Moniruzzaman M. and Winey K.I., Macromolecules, 2006, 39, no. 16: 5194-5205.
  6. 6. Shaffer M.S.P., Sandler J.K.W. and Advani S., In processing and properties of nanocomposites, Singapore: World Sci. Publ., 2006: 460.
  7. 7. Bokobza L. and Chauvin J.P., Polymer, 2005, 46, no. 12: 4144-4151.
  8. 8. Ke Y.G. and Stroeve P., Polymer-layered silicate and silica nanocomposites, Amsterdam, Holland: Elsevier, 2005: 394.
  9. 9. Mark J.E., Lee C.Y.C. and Bianconi P.A., Hybrid organic–inorganic composites, Washington: American Chemical Society Symposium, 1995: 585.
  10. 10. Noell J.L.W., Wilkes D.L., Mohanty D.K. and McGrath J.E., J. of Appl. Polymer Sci., 1990, 40, no. 7-8: 1177-1194.
  11. 11. Huang Z.H., Qu K.Y. and Wei Y., J. of Polymer Sci. Part A: Polymer Chem., 1997, 35, no. 12: 2403-2409.
  12. 12. Lipatov Y.S., Polymer reinforcement, Toronto: Chem. Tech. Publishing, 1995: 385.
  13. 13. Lipatov Y.S. and Karabanova L.V., Gradient interpenetrating polymer networks. Advances in Interpenetrating Polymer Networks, Lancaster: Tech. Publ. Co., 1994: 191–212.
  14. 14. Karabanova L.V., Sergeeva L.M. and Boiteux G., Composite Interfaces, 2001, 8, no. 3-4: 207-219.
  15. 15. Lipatov Y.S., Karabanova L.V. and Sergeeva L.M., Polymer International, 1994, 34, no. 1: 7-13.
  16. 16. Zhang H., Wang B., Li H., Jiang Y. and Wang J., Polymer International, 2003, 52, no. 9, 1493-1497.
  17. 17. Jeong H.M.and Lee S.H., J. of Macromolecular Sci., Part B: Physics,2003, 42, no. 6: 1153-1167.
  18. 18. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V., Heli-as M., Philips G.P., Rose S., Mikhalovska L., Boiteux G., Sergeeva L.M. and Lutsyk E.D., J. of Materials Sci.: Materials in Medicine, 2006, 17, no. 12: 1283-1296.
  19. 19. Karabanova L., Mikhalovsky S., Lloyd A., Boiteux G., Sergeeva L., Novikova T., Lutsyk E. and Meikle S., J. of Material Chem., 2005, 15, no. 4: 499-507.
  20. 20. Karabanova L.V., Mikhalovsky S.V. and Lloyd A.W., J. of Material Chem., 2012, 22, no. 16: 7919-7928.
  21. 21. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bonda-ruk O.N., Geraschenko I.I., Vorononin E.F., Nosach L.V. Zarko V.I. and Pahlov E.M., Nanorazmernie sistemy I nanomaterialy: issledovaniya v Ukraine, Kiev: (Akademperiodika, 2014: 724-730.
  22. 22. Gun’ko V.M., Voronin E.F., Nosach L.V., Pakhlov E.M., Guzenko N.V., Leboda R. and Skubiszewska–Ziкba, J. Adsorpt. Sci. Technol., 2006, 24, no. 2: 143-157.
  23. 23. Karabanova L.V., Mikhalovsky S.V., Sergeeva L.M., Meikle S.T., Helias M. and Lloyd A.W., Polym. Eng. and Sci., 2004, 44, no. 5: 940-947.
  24. 24. Lipatov Yu.S., Shilov V.V., Gomza Yu.P. and Cruglyak N.E., Rentgenographycheskie Metogy Izuchenia Polimernych Sistem (Radiographic methods for studing polymer system), Kiev: Naukova Dumka, 1982.
  25. 25. Vonk C.G., FFSAXS’s Program for the Processing of Small-Angle X-ray Scattering Data, Geleen, DSM, 1974.
  26. 26. Shilov V.V., Karabanova L.V., David L., Seytre G., Gomza Yu.P., Nesin S.D., Sergeeva L.M., Lutsyk E.D. and Svjatina A.V., Polimernyi Zhurnal (Polymer J.), 2005, 27, no. 4: 255-267.
  27. 27. Karabanova L.V., Gomza Yu.P., Bondaruk O.M., Nesin S.D., Voronin E.P and Nosach L.V., Ukrainskyi Khimicheskii Zhurnal (Ukr. Chem. J.), 2015, 81, no. 9: 52-59.
  28. 28. Ivashev M.N., Sergienko A.V., Savenko I.A. and Arl’t A.V., Sovremennye Naukoemkie Tekhnolohii (Modern High Technologies), 2014, 4: 126-127.
  29. 29. Grigorova O.V., Romasenko L.V and Faizulloev A.Z., Praktycheskaia Medytsyna (Practical Medicine), 2012, 2, no. 57: 178-182.
  30. 30. Dovgun S.S. and Demidova M.A., Sovremennye Problemy Nauky i Obrazovaniia (Modern Problems of Science and Education), 2012, no. 3.
  31. 31. Voronkov A.V., Stepanova E.F., Jidkova Yu.Yu. and Gamzeleva O.Yu., Fundamentalnye Issledovaniia (Fundamental Research), 2014, 3, no. 2: 301-308.
  32. 32. Yuldashev N.M., Akborhodzhaeva H.N., Ziyamutdinova Z.K., Sultanhodjaev U.L. and Suleimanova G.G., Sovremennye Problemy Nauky i Obrazovaniia (Modern Problems of Science and Education), 2013, no. 5: 342.
  33. 33. Zevak E.G., Ogienko A.G., Boldyreva E.V., Muz’ S.A., Ogienko A.A., Covalenko Yu.A., Colesov B.A., Drebuschak V.A., Trofimov N.A., Manakov A.Yu. and Boldyrev V.V., Nanotechnolohii i Okhrana Zdorovia (Nanotechnology and Health), 2013, 5, no. 3: 30-4330.
  34. 34. Beaucage G., J. Appl. Cryst., 1995, 28, no. 6: 717-728.
  35. 35. Karabanova L.V., Lutsyk E.D., Skiba S.I. and Sergeyeva L.M., Zbornyk Kompozytsyonnyie Polymernyie Materyaly (Collection Composite polymeric materials), 1989, 40: 49-53.
  36. 36. Bessonov Yu.S., Tager A.A., Yushkova S.M., Coma- rov N.N., Guzeev V.V. and Raphikov M.N., Vysokomolekuliarnyie Soedynenia Seriia A (Macromolecular compounds Part A), 1978, 20, no. 1: 99-105.
  37. 37. Таgеr А.А., Vysokomolekuliarnyie Soedynenia Seria A (Macromolecular compounds. Part A), 1972, 24, no. 12: 2690-2698.
  38. 38. Kwei T., J. Polym. Sci. Part A, 1965, 3, no. 9: 3229-3237.
  39. 39. Behring B.P., Myers A.L. and Sierpinski V.V., Doklady AN SSSR (Reports of Academy of Sciences of the USSR ), 1970, 193: 119-128.
  40. 40. Tager A.A., Vysokomolek. Soed., 1977, 19, no. 8: 1654-1667.
  41. 41. Karabanova L.V., Gorbach L.A. and Skiba S.I., Zbornyk Kompozytsyonnyie Polymernyie Materyaly (Ukraine) (Composite polymeric materials), 1991, 49: 35-39.