2016 (4) 3

https://doi.org/10.15407/polymerj.38.04.297

Non-isothermal kinetics of e-caprolactam blocked polyisocyanate thermal dissociation

 

N.V. Kozak, K.S. Didenko, V.V. Davidenko, V.V. Klepko

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2016, 38, no. 4: 297-301.

 

Section: Structure and properties.

 

Language: English.

 

Abstract:

The differential scanning calorimetry method was used to investigate the kinetics of thermal dissociation of e-caprolactame blocked polyisocyanate under non-isothermal conditions using isoconversion approach. The values of kinetic parameters of the process calculated using several theoretical models (Kissinger, Ozawa–Flynn–Wall, Friedman) are in good agreement. Differential scanning calorimetry with temperature modulation denotes the structural changes in the system under heating and consumption of considerable part of NCO-groups at the same time with thermal dissociation.

 

Keywords: blocked isocyanate, differential scanning calorimetry, non-isothermal kinetics, activation energy, reaction order.

 

References

  1. 1. Wicks D.A., Wicks Z.W. Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings, 1999, 36: 148–172.
  2. 2. Delebecq E., Pascault J.-P., Boutevin B. and Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate and non-isocyanate polyurethane. Chem. Rev, 2013, 113: 80–118.
  3. 3. Kozak N.V., Nizelskii Yu.M., Nesterenko H.M. Modyfikuvannia polimernykh kompozytsii blokovanymy izotsianatamy (Modification of polymer compositions with blocked isocyanates). Voprosy khimii i khimicheskoi technologii, 2002, no. 3: 196–198.
  4. 4. Pat. 59873 Ukraine, MPK С0G 18/06. Blokovani poliizotsianaty dlia teplo- ta termostiikykh materialiv (Blocked polyisocyanates for heat- and thermo-resistant materials). Kozak N.V., Kosyanchuk L.F., Nizelskii Yu.M. et al. Publish. 15.06.2006. Bull. №6.
  5. 5. Starink M.J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta, 2003, 404: 163–176.
  6. 6. Kissinger H. E. Reaction kinetics in thermal analysis. Analyt. Chem., 1957, 29: 1702.
  7. 7. Ozawa T. A new method to analyze thermogravimetric data // Bull. Chem. Soc. Japan, 1965, 38: 1881.
  8. 8. Friedman H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C, 1964, 6: 183–195.
  9. 9. Saunders J.H., Frisch K.C. Polyurethanes. Chemistry and technology, Vol.1, Chemistry, New York: Interscience (Wiley), 1962: 388.
  10. 10. Wunderlich B. Thermal Analysis of Polymeric Materials, Berlin Heidelberg: Springer-Verlag, 2005: 894, ISBN 978-3-540-26360-9.