2016 (4) 6

https://doi.org/10.15407/polymerj.38.04.312

Structure of the polyurethane ionomers containing natural compounds

 

L.P. Robota, Т.V. Travinskaya, V.I. Shtompel, A.N. Brykova, Yu.V. Savelyev

 

Institute of Macromolecular Chemistry, NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2016, 38, no. 4: 312-318.

 

Section: Structure and properties.

 

Language: Russian.

 

Abstract:

On the basis of ionomer oligourethane prepared using polyoxytetramethylene glycol MM1000, 1,6-hexamethylene diisocyanate, 2,2-dimethylolpropionic acid and natural renewable components: xanthan (Xa) and castor oil (CO), according to the environmentally friendly technologies, the new stable polyurethane ionomer (IPU) dispersions and based biodegradable under the influence of environmental factors (the model conditions) film materials have been obtained. The rate of biodegradation of the IPUs, containing 5–34 % of renewable component, is in 4–23 times higher in comparison with matrix. The presence of renewable natural compounds reduces the cost of IPU. The biodegradability at the end of exploitation period contributes to the nature protection. The structure and supramolecular interactions in IPUs have been studied by IR spectroscopy and wide angle X-ray scattering (WAXS). WAXS studies have shown that IPU / CO17 has an amorphous structure and is the subject to the lowest degradation while the amorphous-crystal Xa-containing IPUs possess high degradability. Small-angle X-ray scattering has confirms the heterogeneous structure of IPU / CO17 and IPU/ CO14Xa20 at the nanolevel

 

Key words: ionomer polyurethanes, natural renewable raw materials, xanthan, castor oil, structure, properties.

 

Литература

  1. 1. Howard G. Biodegradation of polyurethane, International Biodeterioration & Biodegradation, 2006, 49: 245–252.
  2. 2. Santerre J. P, Woodhouse K., Laroche G. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials, Biomaterials, 2005, 26: 7457–7470.
  3. 3. Coutinho F. Delpech M. Degradation profile of films from aqueous polyurethane dispersions, Polymer Degradation and Stability, 2000, 70, no. 1: 49–57.
  4. 4. John M. J., Thomas S. Biofibres and biocomposites, Carbohydrate Polymers, 2008, 71, no. 2: 343–364.
  5. 5. Cerruti P., Santagata G., Gomez G. d’Ayala [et al.] Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer, Polymer Degradation and Stability, 2011, 96, no. 5: 839-846.
  6. 6. Travinskaya T.V., Savelyev Yu.V. Aqueous polyurethane-alginate compositions: peculiarities of of behavior and performance, European Polymer Journal, 2006, 42, no. 2: 388–394.
  7. 7. Savelyev Yu.V., Mishchuk О.А., Markovskaya L.А., Travinskaya Т.V. The method of obtaining of polymer composition. Ukrainian Patent 51301, Publ. 12.07.2010, Bul. 13.
  8. 8. Travinskaya T.V., Brykova A.N., Bortnitsky V.I Savelyev Yu.V. Preparation and Properties of (bio)degradable ionomer polyurethanes based on xanthan, Polym. J., 2014, 36, no.4: 393-400 (in Ukrainian).
  9. 9. Manawwer Alam. Deewan Akram, Eram Sharmin [et al.]. Vegetable oil based eco-friendly coating materials. Arabian Journal of Chemistry, 2014, 7, no. 4: 469-479.
  10. 10. Shida Miao, Ping Wang, Zhiguo Su, Songping Zhang. Vegetable-oil-based polymers as future polymeric biomaterials, Acta Biomaterialia, 2014, 10, no. 4: 1692-1704.
  11. 11. Siryk О.М., Myshak V.D., Grishchenko V.K., Lebedev E.V. Synthesis and structural peculiarities of reactive oligomers based on vegetable oils, Polym. J., 2012, 34, no. 3: 293-297 (in Ukrainian).
  12. 12. Busko N.A., Barantsova A.V., Grishchenko V.K., et.al. Initiating castor oil-based oligomeric systems for block copolymers synthesis. Polym. J, 2010, 32, no.2: 259-266 (in Russian).
  13. 13. Savelyev Yu. V., Travinskaya T.V., Markovskaya L.A., Brykova A.N. Method of obtaining of polymer biodegradable composition. Ukrainian Patent 93372, Publ. 25.09.2014, Bul. 18.
  14. 14. Schegolev S.A.Klenin V.I. Method of determiation of particle size by turbidity spectrum. Vysokomol. Soed. A., 1971, 13, No12:2809 – 2815 (in Russian).
  15. 15. Ermolovich О.А., Makarevich А.V., Goncharova Е.P. Methods of evaluation of biodegradability of polymeric materials, Biotekhnologia, 2005, 4: 47–54 (in Russian).
  16. 16. Vatulev V.N., Laptij S.V., Kercha Yu.Yu. Infrared spectra and structure of polyurethanes. Kiev, Nauk. Dumka, 1987: 188.
  17. 17. Grinie A. Roentgenografia. Theory and Practice. М: Fizmatgis, 1961: 604.
  18. 18. Kratky O., Pilz I., Schmitz P.J. Absolute intensity measurement of small-angle X-ray scattering by means of a standard sample. J. Colloid Interface Sci., 1966, 21, no. 1: 24-34.
  19. 19. Ruland W. Small-angle scattering of two-phase systems: Determination and significance of systematic deviations from Porod’s law. J. Appl. Cryst., 1971, 4, no. 1: 70-73.
  20. 20. Perret R., Ruland W. Eine verbesserte Auswertungsmethode fur die Rцnt-genkleinewinkelstreuung von Hochpolymeren. Kolloid Z. – Z. Polymere, 1971, 247, no. 1: 835-843.