2022 (4) 7
https://doi.org/10.15407/polymerj.44.04.304
THE STUDY OF INTERMOLECULAR INTERACTIONS IN THE POSS-CONTAINING NANOCOMPOSITES BASED ON POLYURETHANE AND POLYURETHANE/POLY(HYDROXYPROPYL METHACRYLATE) MATRICES
L.V. Karabanova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0002-5909-0042
L.A. Honcharova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0003-2529-9945
N.A. Busko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0001-9831-6748
S.M. Ostapiuk,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02155, Ukraine,
ORCID: 0000-0001-8436-9080
Polym. J., 2022, 44, no. 4: 304-315.
Section: Polymer synthesis.
Language: Ukrainian.
Abstract:
The nanocomposites based on polyurethane matrix and multicomponent polymer matrices consisting of polyurethane and poly(hydroxypropyl methacrylate) with different contents of the last, and 1,2-propanediolisobutyl polyhedral oligomeric silsesquioxane (1,2-propanediolisobutyl-POSS), which was used as a functionalized nanofiller, were synthesized. The influence of the content of 1,2-propanediolisobutyl-POSS on intermolecular interactions and structural features of the nanocomposites was investigated by the method of IR-spectroscopy with Fourier transformation and attenuated total reflection (FTIR-ATR). The study of thermal curing of the model system, which consists of the adduct of trimethylolpropane with toluene diisocyanate and 1,2-propanediolisobutyl-POSS, made it possible to conclude that 1,2-propanediolisobutyl-POSS participates in the reaction of urethane formation using of one of the terminal hydroxyl groups, and it is incorporated into the polymer chain between cross-linking of polyurethane networks. The investigation of multicomponent polymer matrices by FTIR-ATR spectroscopy was done and was shown that photopolymerization of second polymer poly(hydroxypropyl methacrylate) in the matrix of polyurethane was completed by the opening of a double bond and the formation of a linear polymer in the composition of semi-IPN. Studies of nanocomposites based on multicomponent polymer matrices consisting of polyurethane and poly(hydroxypropyl methacrylate) with 15 and 30 % of the last by FTIR-ATR spectroscopy demonstrated the presence of POSS in the nanocomposites and the influence of POSS content on the structure of the studied systems and on the degree of phase separation. The POSS is “embedded” into the polymer chain between cross-linking of the polyurethane networks, with the additional formation of a complex system of intermolecular hydrogen bonds between the carboxyl and amine components of urethane groups in the nanocomposites.
Key words: nanocomposites, 1,2-propanediolisobutyl-POSS, polyurethane, poly(hydroxypropyl methacrylate), semi-interpenetrating polymer networks, FTIR-ATR spectroscopy.
REFERENCES
1. Liu S., Guo R., Li C., Lu C., Yang G., Wang F., Nie J., Ma C., Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. European Polymer Journal, 2021, 143, 110180. https://doi.org/10.1016/j.eurpolymj.2020.110180.
2. Zhang W., Camino G., Yang, R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 2017, 67: 77–125. https://doi.org/10.1016/j.progpolymsci.2016.09.011.
3. Lungu A., Cernencu A. I., Vlasceanu G. M., Florea N. M., Ionita M., Iovu H. 3D POSS cages decorated 2D graphenic sheets: A versatile platform for silicon-carbonaceous nano-additives design. Composites Part B: Engineering, 2021, 207, 108578. https://doi.org/10.1016/j.compositesb.2020.108578.
4. Raftopoulos K. N., Pielichowski K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–187. https://doi.org/10.1016/j.progpolymsci.2015.003.
5. Blanco I. Decomposition and ageing of hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 415–462. https://doi.org/10.1007/978-3-030-02327-0_13.
6. Ramachandran S., Muthukaruppan A. Porous hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 255–297. https://doi.org/10.1007/978-3-030-02327-0_8.
7. Pracella M. Polyolefins with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 129 namics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 2016, 52: 136–166. https://doi.org/10.1007/978-3-030-02327-0_4.
8. Kausar A. Design and synthesis of hybrid materials with POSS. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 27–44. https://doi.org/10.1007/978-3-030-02327-0_2.
9. Wang F., Wu Y., Huang Y., Liu L. Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Comp. Sci. Tech., 2018, 156: 269–275. https://doi.org/10.1016/j.compscitech.2018.016.
10. Kazemi F., Mir Mohamad Sadeghi G., Kazem H.R. Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory polyurethane-POSS nanocomposites. European Polymer Journal, 2019, 114: 446–451. https://doi.org/10.1016/j.eurpolymj.2018.12.041.
11. Hebda E., Pielichowski K. Polyurethane/POSS hybrid materials. Polymer/POSS nanocomposites and hybrid materials. Kalia S., Pielichowski K. (eds.), Springer Nature Switzerland, 2018: 167–204. https://doi.org/10.1007/978-3-030-02327-0_5.
12. Rao Y. Engineering of interface in nanocomposites based on PU polymers. Polyurethane
Polymers, 2017: 73–133. https://doi.org/10.1016/b978-0-12-804065-2.00003-6.
13. Romo-Uribe A. Viscoelasticity and microstructure of POSS-methyl methacrylate nanocomposites. Dynamics and entanglement dilution. Polymer, 2018, 148, 27–38. https://doi.org/10.1016/j.polymer.2018.06.01.
14. Joshi M., Adak B., Butola B. S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Progress in Materials Science, 2018, 97: 230–282. https://doi.org/10.1016/j.pmatsci.2018.05.001.
15. Zhao H., She W., Shi D., Wu W., Zhang Q., Li R. K. Y. Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility. Composites Part B: Engineering, 2019, 107441. https://doi.org/10.1016/j.compositesb.2019.107.
16. Çakmakçi E. POSS—Thermosetting polymer nanocomposites. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites, 2021: 127–175. https://doi.org/10.1016/B978-0-12-821347-6.00004-4.
17. Wu W., Zhao W., Gong X., Sun Q., Cao X., Su Y., Yu B., Li R.K.Y., Vellaisamy R. A. L. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites. Journal of Materials Science & Technology, 2022, 101: 107–117. https://doi.org/10.1016/j.jmst.2021.05.060.
18. Madbouly S. A., Otaigbe J. U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 2009, 34(12): 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002.
19. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31(2): 137–143 [in Ukrainian].
20. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001.
21. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50–56. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.025.
22. Wei K., Wang L., Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491–1501. https://doi.org/10.1039/c2py20930f.
23. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016.
24. Karabanova L.V., Honcharova L.А., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7 (4): 413–420. https://doi.org/10.15407/hftp07.04.413.
25. Karabanova L.V., Honcharova L.A., Shtompel V.I. Nanocomposites based on polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities. Polym. J. (Ukr.), 2020, 42(2): 85–95 [in Ukrainian]. https://doi.org/10.15407/polymerj.42.02.085.
26. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50(24): 5749–5757. https://doi.org/10.1016/j.polymer.2009.05.037.
27. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Materials Chemistry and Physics, 2009, 117(1): 91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006.
28. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P. T. Thermally modulated nanostructure of poly(ε-caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54(13): 3350–3362. https://doi.org/10.1016/j.polymer.2013.04.015.
29. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int., 2004, 53(12): 2051–2058. https://doi.org/10.1002/pi.1627.
30. Bellamy L.J. The infrared spectra of complex molecules, v. II. Advances in infrared group frequencies. 2nd ed. Chapman and Hall, London: Methuen, 1980: 299. https://trove.nla.gov.au/version/12064222.
31. Wamke A., Dopierała R., Prochaska K., Maciejewski H., Biadasz A., Dudkowiak A. Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Col Surf A, 2015, 464:110–120. https://doi.org/10.1016/j.colsurfa.2014.10.022.
32. Jerman I., Koželj M., Orel B. The effect of polyhedral oligomeric silsesquioxane dispersant and low surface energy additives on spectrally selective paint coatings with self-cleaning properties. Sol Energy Mater Sol Cells, 2010, 94(2): 232–245. https://doi.org/10.1016/j.solmat.2009.09.008.
33. Maoz R., Sagiv J., Degenhardt J., Möhwald H., Quint P. Hydrogen-bonded multilayers of self-assembling silanes: structure elucidation by combined Fourier transform infrared spectroscopy and X-ray scattering techniques. Supramol. Sci., 1995, 2(1): 9–24. https://doi.org/10.1016/0968-5677(96)85635-5.
34. Dittmar U., Hendan B.J., Florke U., Marsmann H.C. Funktionalisierte octa-(propylsilsesquioxane) (3-XC3H6)8(Si8O12) modellverbindungen für oberflächenmodifizierte kieselgele. J. Organomet. Chem., 1995, 489(1–2): 185–194. https://doi.org/10.1016/0022-328X(94)05100-P.
35. Moon J.H., Seo J.S., Xu Y., Yang S. Direct fabrication of 3D silica-like microstructures from epoxy-functionalized polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem., 2009, 19(27): 4687–4691. https://doi.org/10.1039/b901226e.
36. Janowski B., Pielichowski K. Nanohybrid polyurethane/functionalized silsesquioxane systems. Part I. Structural investigations using FT-IR and NMR methods. Polymery (Polska), 2012, 57(7–8): 518–528.
37. Lipatov Yu.S., Shilov V.V., Gomza Yu.P., Kruglyak N.E. Rentgenograficheskiye sposoby issledovaniya polimernykh sistem. Kyiv: Naukova Dumka, 1982: 296.
38. Raftopoulos K.N., Pandis C., Apekis L., Pissis P., Janowski B., Pielichowski K., Jaczewska J. Polyurethane–POSS hybrids: Molecular dynamics studies. Polymer, 2010, 51(3): 709–718. https://doi.org/10.1016/j.polymer.2009.11.06.
39. Mattia J., Painter P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules, 2007, 40(5), 1546–1554. https://doi.org/10.1021/ma0626362.
40. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29(3): 177–182 [in Russian].
41. Karabanova L.V., Whitby R.L., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291(3): 573–583. https://doi.org/10.1007/s00396-012-2745-4.
42. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72(8): 865–872. https://doi.org/10.1016/j.compscitech.2012.02.008.
43. Pielichowski K., Njuguna J., Janowski B., Pielichowski J. Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. Adv. Pol. Sci., 2006, 201(1): 225–296. https://doi.org/10.1007/12_077.
44. Chang Z., Zhang M., Hudson A. G., Orler E. B., Moore R. B., Wilkes G. L., Turner S. R. Synthesis and properties of segmented polyurethanes with triptycene units in the hard segment. Polymer, 2013, 54(26): 6910–6917. https://doi.org/10.1016/j.polymer.2013.10.02.