2024 (1) 2

https://doi.org/10.15407/polymerj.46.01.015

SYNTHESIS OF COBALT NANOPARTICLES IN AQUEOUS

SOLUTIONS ASSISTED BY POLYMER/INORGANIC HYBRID

Nataliya PERMYAKOVA1* (ORCID: 0000-0002-7622-1059), Tatyana ZHELTONOZHSKAYA1 (ORCID: 0000-0001-5272-4244), Dmytro KLYMCHUK2 (ORCID: 0000-0002-7076-8213), Valeriy KLEPKO1 (ORCID: 0000-0001-8089-8305), Liudmyla GRISHCHENKO3 (ORCID: 0000-0002-0342-4859), Arina FOMENKO4, Liudmyla VRETIK4 (ORCID: 0000-0003-3456-7518)
1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske highway, 02155 Kyiv, Ukraine,

2M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2 Tereshchenkivska str., 01601 Kyiv, Ukraine,

3Taras Shevchenko National University of Kyiv, Faculty of Radiophysics, 4g Glushkova av., 03127 Kyiv, Ukraine,

4Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Department of Macromolecular Chemistry, 60 Volodymyrska str., 01033 Kyiv, Ukraine,

*e-mail: permyakova@ukr.net
Polym. J., 2024, 46, no. 1: 15-29.

Section: Structure and properties.

Language: English.

Abstract:

Hydrophilic polymer/inorganic hybrids (PIH) containing silica nanoparticles and polyacrylamide chains proved to be effective matrices for the in situ synthesis of cobalt nanoparticles. PIH sample was synthesized by free-radical polymerization of acrylamide from the unmodified surface of SiO2 nanoparticles and characterized by elemental analysis, dynamic thermogravimetric analysis, static light scattering, potentiometric titration, viscometry and transmission electron microscopy (TEM). The processes of borohydride reduction of cobalt ions from the Co(NO3)2·6H2O solution to nanoparticles in water medium and aqueous solutions of PIH were studied as a function of the concentrations of metal salt and hybrid concentrations using UV-Vis spectroscopy and TEM. A special approach to characterize the kinetics and efficiency of CoNPs formation in water medium and hybrid solutions using UV-Vis spectroscopy was implemented. The kinetic parameters of the CoNPs formation process as well as the yield, size, and morphology of nanoparticles in hybrid solutions and water medium at various concentrations of metal salt and hybrid were determined. The growth of both concentrations of reagents had a positive effect on the rate of formation of metal nanoparticles and their yield, but in all cases, the reduction process developed much slower in hybrid solutions compared to pure water. The morphology of the CoNPs/PIH nanocomposites was mainly represented by separate swollen hybrid particles containing metal nanoparticles with dav~3 nm.

Key words: polymer/inorganic hybrid, matrix, in situ synthesis, borohydride reduction, cobalt nanoparticles.

References

REFERENCES
1. Romero-Fierro D., Bustamante-Torres M., Bravo-Plascencia F., Magaña H., Bucio E. Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers, 2022, 14: 2467-2490. https://doi.org/10.3390/polym14122467.
2. Li X., Sun L., Wang H., Xie K., Long Q., Lai X., Liao L.Synthesis of cobalt nanowires in aqueous solution under an external magnetic field. Beilstein J. Nanotechnol. 2016, 7: 990-994. https://doi.org/10.3762/bjnano.7.91.
3. Vodyashkin A.A., Kezimana P., Prokonov F.Y., Vasilenko I.A., Stanishevskiy Y.M. Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A Review. Crystals, 2022, 12: 272-298. https://doi.org/10.3390/cryst12020272.
4. Kaur A., Gangacharyulu D., Bajpai P.K. Catalytic Hydrogen Generation from NaBH4/H2O System: Effects of Catalyst and Promoters. Brazilian Journal of Chemical Engineering, 2018, 35,№1: 131-139. https://doi.org/10.1590/0104-6632.20180351s20150782.
5. Angeloni L., Passeri D., Schiavi P.G., Pagnanelli F., Rossi M. Magnetic force microscopy characterization of cobalt nanoparticles: A preliminary study. International conference of trends in material science and inventive materials: ICTMIM 2020. https://doi.org/10.1063/5.0023608.
6. Dzidziguri E.L,Sidorova E.N, Inkar M., Yudin A.G., Kostitsyna E.V., Ozherelkov D.Yu., Slusarsky K.V., NalivaikoA.Yu., Gromov A.A. Cobalt nanoparticles synthesis by cobalt nitrate reduction. Mater. Res. Express, 2019, 6: 105081. https://doi.org/10.1088/2053-1591/ab3ca8.
7. Zhang Z., Zhou T., Lu M., Poh A.W.C., Piramanayagam S.N. Cobalt Nanomaterials: Synthesis and Characterization. In: Nanotechnologies for the Life Sciences. Edited by Challa S.S.R. Kumar WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2011, 4680 pp.
8. Anwar A., Numan A., Siddiqui R., Khalid M., Khan N.A. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasites Vectors, 2019, 12: 280-290. https://doi.org/10.1186/s13071-019-3528-2.
9. Khusnuriyalova A.F., Caporali M., Hey-Hawkins E., Sinyashin O.G., Yakhvarov D.G. Preparation of Cobalt Nanoparticles.Eur. J. Inorg. Chem.,2021, 30: 3023–3047. https://doi.org/10.1002/ejic.202100367.
10. Hatamie S., Dhole S.D., Ding J., Kale S.N. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages. Journal of Magnetism and Magnetic Materials, 2009, 321, №14: 2135–2138. doi:10.1016/j.jmmm.2009.01.014.
11. Carrasco-García A., Vali S.A., Ben-Abbou Z., Moral-Vico J., Markeb A.A., Sánchez A. Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO2 Hydrogenation. Materials, 2024, 17, №3: 697. https://doi.org/10.3390/ma17030697.
12. Medvedeva O.I., Kambulova S.S., Bondar O.V., Gataulina A.R., Ulakhovich N.A., Gerasimov A.V., Evtugyn V.G., GilmutdinovI. F., Kutyreva M.P. Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix. Journal of Nanotechnology, 2017, 9 p. doi:10.1155/2017/760765.
13. Arif M. Complete life of cobalt nanoparticles loaded into cross-linked organic polymers: a review. RSC Advances 2022, 12, №24: 15447-15460. https://doi.org/10.1039/D2RA01058E.
14. Ajmal M., Siddiq M., Al-Lohedan H., Sahiner N. Highly versatile p(MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Adv., 2014, 4, №103: 59562–59570. https://doi.org/10.1039/c4ra11667d.
15. Farooqi Z.H., Iqbal S., Khan S.R. et al. Cobalt and nickel nanoparticles fabricated p(NIPAM-co-MAA) microgels for catalytic applications. e-Polymers, 2014, 14: 313-321. https://doi.org/10.1515/epoly-2014-0111.
16. Zhao Y.-W., Zheng R.K., Zhang X.X., Xiao J.Q. A simple method to prepare uniform Co nanoparticles. IEEE Trans. Magn. 2003, 39: 2764–2766. https://doi.org/10.1109/TMAG.2003.815592.
17. Kamal T., Khan S.B., Haider S., Alghamdi Y.G., Asiri A.M. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 2017, 104: 56–62. https://doi.org/10.1016/j.ijbiomac.2017.05.157.
18. Chairam S., Jarujamrus P., Amatatongchai M. Starch hydrogel-loaded cobalt nanoparticles for hydrogen production from hydrolysis of sodium borohydride. Advances in Natural Sciences: Nanoscienc and Nanotechnology, 2019, 10, no. 2: 025013. https://doi.org/10.1088/2043-6254/ab23fb.
19. Lisiecki I., Pileni M. P. Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles. Langmuir, 2003, 19: 9486–9489. https://doi.org/10.1021/la0301386.
20. Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem., 2010, 82, №10: 1901–1917. https://doi.org/10.1351/PAC-CON-09-10-22.
21. Gordon J.E. Solution Chemistry: The Organic Chemistry of Electrolyte Solutions. Wiley-Interscience, New York, 1975, 554 pp.
22. Sari N., Kahraman E., Sari B. Synthesis of Some Polymer-Metal Complexes and Elucidation of their Structures. J. Macromol. Sci., Part A: Pure Appl. Chem., 2006, 43, no. 8: 1227–1235. https://doi.org/10.1080/10601320600737484.
23. Lou X., Chen M., Hu B. The effect of Nitrogen and Oxygen Coordination: Toward a Stable Anode for Reversible Lithium Storage. New J. Chem., 2018, https://doi.org/10.1039/c8nj03367f.
24. Girma K.B., Lorenz V., Blaurock S., Edelmann F.T. Coordination Chemistry of Acrylamide: 1. Cobalt(II) Chloride Complexes with Acrylamide – Synthesis and Crystal Structures. Z. Anorg. Allg. Chem., 2005, 631, no. 8: 1419–1422. https://doi.org/10.1002/zaac.200500027.
25. Girma K.B., Lorenz V., Blaurock S., Edelmann F.T. Coordination Chemistry of Acrylamide 4. Crystal Structures and IR Spectroscopic Properties of Acrylamide Complexes with CoII, NiII, and ZnII nitrates. Z. Anorg. Allg. Chem., 2005, 631, no. 10: 1843–1848. https://doi.org/10.1002/zaac.200500210.
26. Chen X., Wang L., Li Q., Zhang J., Wang J., Sun J., Zhang Y. Reversible-deactivation radical polymerizations of acrylamide mediated by cobalt complexes supported by amino-bis(phenolate) ligands. Journal of Macromolecular Science, 2020, Part A, 8 p. https://doi.org/10.1080/10601325.2019.1691453.
27. Foley K., Condes L., Walters K.B. Influence of metal-coordinating comonomers on the coordination structure and binding in magnetic poly(ionic liquid)s. Mol. Syst. Des. Eng., 2023, 8: 1402. https://doi.org/10.1039/d3me00076a.
28. Zheltonozhskaya T., Permyakova N., Kondratiuk T., Beregova T., Klepko V., Melnik B. Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukrainian Journal of Chemistry, 2019, 7, no. 2: 20-39. https://doi.org/10.17721/fujcV7I2P20-39.
29. Zheltonozhskaya T.B., Permyakova N.M., Kravchenko O.O., Maksin V.I., Nessin S.D., Klepko V.V., Klymchuk D.O. Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polym.-Plast. Technol. Mater, 2020, 59: 1-23. https://doi.org/10.1080/25740881.2020.1811318.
30. Zheltonozhskaya T.B., Permyakova N.M., Klepko V.V., Grishchenko L.M., Klymchuk D.O. Highly dispersed nanocomposites based on polymer/inorganic hybrids and nickel nanoparticles: the role of the matrix structure in the process of formation. Polimernyi Zhurnal, 2023, 45, no. 1: 37–55. https://doi.org/10.15407/polymerj.45.01.037.
31. Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley-Interscience, 1979, 896 pp.