2016 (3) 8

https://doi.org/10.15407/polymerj.38.03.244

Graft copolymers PVA-g-PAA as effective matrix for formation and stabilization silver nanoparticles

 

Т.B. Zheltonozhskaya, S.V. Fedorchuk, D.O. Klymchuk, Yu.P. Gomza, S.D. Nesin

 

Kiev Taras Shevchenko National University

60, Vladimirskaya str., Kyiv, 01033, Ukraine

Institute of Botany NAS of Ukraine

2, Tereschenkivska str., Kyiv, 01601, Ukraine

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2016, 38, no. 3: 244-254.

 

Section: Synthesis polymers.

 

Language: Ukrainian.

 

Abstract:

A series of PVA-g-PAAm graft copolymers based on chemically complementary poly(vinyl alcohol) and polyacrylamide, which ones contained different quantity and length of grafted chains, have been synthesized in aqueous medium using the radical template “grafting from” polymerization technique. The constant concentration of the matrix (PVA macromolecules with Mw=90 kDa) and variable concentrations of the redox initiator and monomer, which determined the quantity and length of the grafts, were applied. The main molecular parameters of the graft copolymers were characterized and the changes in the grafted chain quantity N from 10 to 40 per one copolymer macromolecule were found. A high activity of PVA-g-PAA as templates in the processes of in situ synthesis and stabilization of silver nanoparticles (AgNPs) in water was revealed. The kinetic regularities of AgNP formation and the nanoparticle yield were established basing on the analysis of the position and integrated intensities of the nanoparticle surface plasmon resonance band (SPRB) in UV-Vis spectra. It was shown that the graft copolymers, which form in aqueous solutions the micelle-like structures, ensured both the high rate of formation and large yield of AgNPs as well as their long-term stabilization in time. An interesting effect of a sharp reduction in the maximum position of SPRB in 16-19 nm within narrow time interval (~ 3 min) that took place at the accumulation of a large enough quantity of AgNPs in the reaction mixture has been established too. By this phenomenon, the process of regularization (crystallization) of primary AgNPs could be fixed in time. The growth of the graft number in the copolymer macromolecules from 10 to 40 resulted in the increase in nanoparticle yield, especially at a low concentration of polymeric template. The obtained AgNPs/PVA-g-PAAm compositions were studied in solutions by transmission electron microscopy and in a bulk state by wide-angle and small-angle X-ray scattering. It was shown that AgNPs synthesized had a crystalline structure, spherical shape, small size (< 10 nm), and low polydispersity. The compositions AgNPs/PVA-g-PAAm in a bulk state demonstrated the two-level fractal organization of their structure. Silver nanoparticles with a small size and smooth surface constituted the 1-st lower level of the composition fractal structure but the mass-fractal clusters of the graft copolymer matrix formed the 2-nd higher level of that structure.

 

Key words: graft copolymer, micelle-like structure, silver nanoparticles, polymer/metal compositions.

 

References

  1. 1. Pomogailo А.D., Pomogailo А.D., Rozenberg А.S., Uflyand I.Е. Metal nanoparticles in polymers, Мoskow: Chemistry, 2000: 672 [in Russian].
  2. 3. Schmid G. Nanoparticles: From theory to application, Weinheim: Wiley-CH Verlag GmbH & Co, 2004: 434.
  3. Bekturov E.А., Kudaybergenov S.Е., Garmagambetova А.К., Iskakov R.M., Ibraeva J.Е., Shmakov S.N. Polymer-protected metal nanoparticles, Almaty, 2010: 274 [in Russian].
  4. 4. Nicolais L., Carotenuto G. (Eds). Metal-polymer nanocomposites, Naples: Wiley, 2005: 303.
  5. 5. Azeredo H.M.C. Nanocomposites for food packaging applications, Food Res. Int, 2009, V.42: 1240–1253.
  6. 6. Huh A.J., Kwon Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 2011, V.156: 128-145.
  7. 7. Tran Q.H., Nguyen V.Q., Le A.-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci.: Nanosci. Nanotechnol, 2013, V.4: 033001 (20 pp).
  8. 8. Maity D., Bain M.K., Bhowmick B., Sarkar J., Saha S., Acharya K., Chakraborty M., Chattopadhyay D. In situ synthesis, characterization and antimicrobial activity of silver nanoparticles using water soluble polymer, J. Appl. Polym. Sci, 2011, V.122: 2189-2196.
  9. 9. Lara H.H., Garza-Trevino E.N., Ixtepan-Turrent L., Singh D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotechnol, 2011, V.9: 30 (8 pp.).
  10. 10. Ravishankar R.V., Jamuna B.A. Nanoparticles and their potential application as antimicrobials, Science against microbial pathogens: communicating current research and technological advances. A. Mendez-Vilas (Ed.), Formatex, 2011: 197-209.
  11. 11. Kittler S., Greulich С., Diendorf J., Kоller M., Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions, Chem. Mater, 2010, V.22: 4548–4554.
  12. 12. Martinez-Castaтуn G.A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J.R., Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes, J. Nanoparticle Res, 2008, V.10: 1343-1348.
  13. 13. Horikoshi S., Abe H., Torigoe K., Abe M., Serpone N. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors, Nanoscale, 2010, V.2: 1441-1447.
  14. 14. Litmanovich О.Е., Papisov I.М. Effect of the length of macromolecules on the dimensions of metal nanoparticles reduced in a polymer solution, Polymer Science. Series А & B, 1999, 41: 1824-1830 [in Russian].
  15. 15. Litmanovich О.Е. Pseudomatrix syntheses of polymer/metal nanocomposite sols: Interaction of macromolecules with metal nanoparticles, Polymer Sci. Series С, 2008, V.50: 63-84.
  16. 16. Kittler S., Greulich С., Kоller M., Epple M. Synthesis of PVP-coated silver nanoparticles and their biological activity towards human mesenchymal stem cells, Mat.-wiss. u. Werkstofftech, 2009, V.40: 258-264.
  17. 17. Xiong Y., Siekkinen A.R., Wang J., Yin Y., Kim M.J., Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide, J. Mater. Chem, 2007, V.17: 2600-2602.
  18. 18. Donescu D., Somoghi R., Nistor C.L., Ghiurea M., Ianchis R., Petcu C., Spataru C.I., Purcar V. Water dispersions of silver nanoparticles stabilized by vinylethers-maleic anhydride alternating copolymers, Digest J. Nanomat. Biostructures, 2014, V.9: 881–889.
  19. 19. Blanco-Andujar C., Tung L.D., Nguyen T., Thanh K. Synthesis of nanoparticles for biomedical applications, Annu. Rep. Prog. Chem., Sect. A, 2010, V.106: 553–568.
  20. 20. Aizawa M., Buriak J.M. Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces, Chem. Mater., 2007, V.19: 5090-5101.
  21. 21. Seo E., Kim J., Hong Y., Kim Y.S., Lee D., Kim B.-S. Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction, J. Phys. Chem. C, 2013, V.117: 11686–11693.
  22. 22. Chumachenko V., Kutsevol N., Rawiso M., Schmutz M., Blanck C. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents, Nanoscale Res. Let., 2014, V.9: 164 (7 pp.).
  23. 23. Zheltonozhskaya Т.B., Zagdanskaya N.Е., Demchenko О.V., Momot L.N., Permyakova N.М., Syromyatni- kov V.G., Kunitskaya L.R. Graft copolymers with chemically complementary components as a special class of high-molecular-weight compounds, Russ. Chem. Rev, 2004, V.73: 811-829.
  24. 24. Zagdanskaya N.E., Zheltonozhskaya Т.B., Syromyatnikov V.G. Studies of kinetics of the polyacrylamide to poly(vinyl alcohol) graft polymerization, Questions Chem. Chem. Technol., 2002, No.3: 53-58 [in Russian].
  25. 25. Maltseva N.N., Hayin V.S. Sodium borohydride. Characteristic and application, M.: Nauka, 1985: 207 pp. [in Russian].
  26. 26. Brown H.C., Boyd A.C. Argentimetric Procedure for Borohydride Determination, Anal. Chem, 1955, V.27: 156-158.
  27. 27. Hohnstedt L.F., Miniatas B.O., Waller M.C. Aqueous sodium borohydride chemistry: the coinage metals, copper, silver, and gold, Anal. Chem., V.37: 1163–1165.
  28. 28. Sergeev B., Lopatina L., Prusov А., Sergeev G. Formation of silver nanoclusters at borohidride reduction of AgNO3in aqueous solutions of polyacrylate, Colloid. J., 2005, V.67: 79-86.
  29. 29. Lipatov Yu.S., Shilov V.V., Gomza Yu.P., Kruglyak N.E. X-Ray diffraction methods to study polymeric systems, Kyiv: Nauk. Dumka, 1982: 296 pp. [in Russian].
  30. 30. Fedorchuk S.V., Zheltonozhskaya Т.B., Permyakova N.M., Gomza Yu.P., Barabash M.Yu., Kunitsky Yu.A. Nanostructured A-b-B-b-A triblock copolymers with hydrophilic chemically complementary components, Nanosystems, nanomaterials, nanotechnologies, 2011, V.8: 869-889 [in Ukrainian].
  31. 31. Romanov V., Siu C.-K., Verkerk U.H., Aribi H.E., Hopkinson A.C., Siu K.W.M. Binding energies of the silver ion to alcohols and amides: a theoretical and experimental study, J. Phys. Chem. A., 2008, V.112: 10912-10920.
  32. 32. Henglein A. Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem., 1993, V.97: 5457-5471.
  33. 33. Kreibig U., Vollmer M. Optical properties of metal clusters, Berlin: Springer, 1995: 436.
  34. 34. Link S., El-Sayed M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 1999, V.103: 8410-8426.
  35. 35. Kelly K.L., Coronado E., Zhao L.L., Schatz G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, V.107: 668-677.
  36. 36. Evanoff D.D., Chumanov Jr. G. Synthesis and optical properties of silver nanoparticles and arrays, Chem. Phys. Chem., 2005, V.6: 1221-1231.
  37. 37. Liz-Marzan L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles, Langmuir, 2006, V.22: 32-41.
  38. 38. Krutyakov Yu.A., Kudrinskiy A.A., Olenin A.Yu., Lisichkin G.V. Synthesis and properties of silver nanoparticles: achievements and prospects, Russ. Chem. Rev., 2008, V.77: 233-260.
  39. 39. Sergeev B., Kiryuhin M., Prusov А., Sergeev G. The obtaining of silver nanoparticles in aqueous solutions of poly(acrylic acid), Moscow Univ. Bull. Ser.2: Chemistry, 1999, V.40: 129-133 [in Russian].
  40. 40 Angelescu D.G., Vasilescu M., Somoghi R., Dones- cu D., Teodorescu V.S. Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions, Colloids and Surfaces: Physicochem. Eng. Aspects, 2010, V.366: 155-162.
  41. 41. Shpak A.P., Shilov V.V., Shilova O.A., Kunitsky Yu.A. Diagnostics of nanosystems. Multilevel fractal nanostructures (Part II), Kyiv: Nauk. Dumka, 2004: 112 [in Russian].
  42. 42. Zhang F., Ilavski J. Ultra-small-angle X-ray scattering of polymers, J. Macromol. Sci., Part C: Polym. Rev., 2010, V.50: 59-90.
  43. 43. Beaucage G., Hyeonlee J., Pratsinis Se., Vemury S. Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering, Langmuir, 1998, V.14: 5751-5760.