2021 (3) 1

https://doi.org/10.15407/polymerj.43.03.149

MODIFICATION OF BITUMINOUS BINDERS FOR ASPHALT CONCRETE PAVEMENTS

V.V. Trachevskyi,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: meches49@ukr.net

ORCID: 0000-0002-3916-9116

K.O. Ivanenko,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: k_ivanenko@i.ua
ORCID: 0000-0002-5637-9633

O.M. Fainleib,
Institute of macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine,

e-mail: fainleib@i.ua

ORCID: 0000-0001-8658-4219

Polym. J., 2021, 43, no. 3: 149-171.

 

Section: Review.

 

Language: Ukrainian.

 

Abstract:

The review is devoted to the analysis of modern research in the development of formulations and technology for the manufacture of composites based on bituminous binders for the creation of improved asphalt concrete. Methods for modification of bitumen by polymer additives, chemical stabilizers, industrial wastes (recycled polymers, ground tire rubber, fly ash, etc.), nanodispersed additives and carbon nanomaterials to obtain the necessary predetermined properties are considered. The positive and negative aspects of using various modifiers are analyzed. The efficiency of modification of bituminous binders with recycled polymers and nano(ultra)dispersed fillers is shown, which makes it possible to create composites based on bituminous binders for asphalt concrete pavements with high performance characteristics. The optimal content of additives to the bitumen binder has been analyzed: the amount of thermoplastic polymers and thermoplastic elastomers in the range of 3-10 wt.%, thermosetting polymers − over 10 wt.%, elastomers − up to 15 wt.%, and nano-sized additives: nano-oxides ≥ 5 wt.%, nanoclay ~ 3 wt. %, carbon nanotubes, graphene < 1.2 wt.%. Modification of bitumen with recycled polymers and partial replacement of expensive polymer modifiers with cheaper polymer waste, composite modifiers, namely recycled polymer mixed with ground tire rubber and / or fly ash are considered. This allows solving the environmental problems (waste utilization and secondary use) and reduce the cost of asphalt concrete.

From the analysis of the experimental results, it becomes clear that for prediction of the properties of modified asphalt concrete, the basic characteristics of the original bitumen, which can differ significantly, are important, as well as the type of modifier (combination of modifiers), its chemical nature, and the efficiency of its dispersing in bitumen. The different chemical composition of the initial bitumen and its physicochemical properties probably play a primary role in imparting high and low temperature properties to asphalt concrete. Modification of a bituminous binder with waste polymers and nanofillers, first of all, makes it possible to improve such important performance characteristics of bitumen and asphalt concrete, such as softening temperature, penetration, penetration index, ductility, viscosity, moisture resistance, complex shear modulus, rutting parameter, resistance to cracking, etc.

Key words: bituminous binder, asphalt concrete, polymer modifiers, polymer waste, recycled polymers, ground tire rubber, fly ash, carbon nanotubes, physical and mechanical properties

 

REFERENCES

 

1. DSTU B В.2.7-119:2011, Asphaltic concrete mixtures, road and aerodromes asphaltic concrete. Specification.
2. European Standard ЕN 12591:2009, Bitumen and bituminous binders. Specifications for paving grade bitumen’s.
3. Study for a Future Strategic Highway Research Program Project Description. Web page on the TRB web site. National Academy of Sciences. Washington D.C. http://www4.trb.org/trb/newshrp.nsf. Accessed 18 November 2001.
4. Superpave System. Web page on the NECEPT web site. The Pennsylvania Transportation Institute, Pennsylvania State University. University Park, PA. Accessed 18 November 2001.
5. DSTU 4044:2019, Viscous petroleum road bitumens. Specification.
6. Morgan P, Mulder A. The Shell bitumen industrial handbook. Chertsey, Surrey, U.K.: Shell Bitumen; 1995. 338 р.
7. Cheraghian G., Cannone Falchetto A., You Z., Chen S., Kim Y.S., Westerhoff J., Moon K.H., Wistuba M.P. Warm mix asphalt technology: An up to date review. Journal of Cleaner Production, 2020, 268: 122128. doi.org/10.1016/j.jclepro.2020.122128.
8. Joni H.H., Al-Rubaee R.H.A., Al-zerkani M.A. Rejuvenation of aged asphalt binder extracted from reclaimed asphalt pavement using waste vegetable and engine oils. Case Studies in Construction Materials, 2019, 11: e00279. doi.org/10.1016/j.cscm.2019.e00279
9. Wang X., Guo H., Yang B., Chang X., Wan C., Wang Z. Aging Characteristics of Bitumen from Different Bituminous Pavement Structures in Service. Materials, 2019, 12, no. 3: 530-549. https://doi.org/10.3390/ma12030530.
10. Androjić I. Ageing of hot mix asphalt. Grapevine, 2016, 68: 477–483. https://doi.org/10.14256/JCE.1420.2015.
11. DSTU B В.2.7-135:2014, Polymer-modified road bitumens. Specifications.
12. DSTU B В.2.7-313:2016, Paving bitumen modified by additives complex. Technical specifications.
13. GBN В.2.3-218-547:2010, Transport facilities. Construction of pavement layers of asphalt at low temperatures
(Dodatok G).
14. Read J., Witheoak D. The Shell Bitumen Handbook, 5th ed. London: Thomas Telford Publishing, 2003.
15. Lesueur D. The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification. Adv. Colloid Interface Sci. 2009, 145: 42–82. doi.org/10.1016/j.cis.2008.08.011.
16. D’Melo D., Taylor R. Constitution and Structure of Bitumen. In The Shell Bitumen Handbook, 6-th ed. Hunter R.N., Self-A., Read J. (Eds.), London: ICE Publishing, 2015: ISBN 978-0727758378.
17. McNally T. Introduction to polymer modified bitumen (PmB). In Polymer Modified Bitumen Properties and Characterisation, 1st ed. McNally T. (Ed.), Sawston: Woodhead Publishing, 2011. https://doi.org/10.1533/9780857093721.1.
18. Solomentzev A.B. Classification and nomenclature of the modifying additives for bitumens. Science and Engineering for Highways (Ru.), 2008, no. 1: 14–16.
19. Technical Committee 8 Flexible Roads. Modified Binders, Binders with Additives and Special Bitumen. Paris: PIARC, 1999: 201. ISBN: RR303-III-1999.
20. Merusi F., Giuliani F. Intrinsic resistance to non-reversible deformation in modified asphalt binders and its relation with specification criteria. Constr. Build. Mater. 2011, 25, no. 8: 3356–3366. https://doi.org/10.1016/j.conbuildmat.2011.03.026.
21. Ghuzlan K.A., Al-Khateeb G.G., Qasem Y. Rheological Properties of Polyethylene-Modified Athens. Journal of Technology & Engineering, 2015, 2, no. 2: 75–88. https://doi.org/10.30958/ajte.2-2-1
22. Golestani B., Nam B.H., Nejad F.M., Fallah S. Nanoclay application to asphalt concrete: Characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Constr. Build. Mater. 2015; 91: 32–38. doi.org/10.1016/j.conbuildmat.2015.05.019.
23. Plewa A. The effect of modifying additives on the consistence and properties of bitumen binders. Advanced materials and technologies. 2016, no. 4: 35–40. doi.org/10.17277/amt.2016.04.pp.035-040.
24. Remišová E., Holý M. Changes of Properties of Bitumen Binders by Additives Application. WMCAUS IOP Conf. Ser.: Mater. Sci. Eng., 2017, 245: no. 3, 032003. doi:10.1088/1757-899X/245/3/032003.
25. Porto M., Caputo P., Loise V., Eskandarsefat S., Teltayev B., Rossi C.O. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci., 2019, 9, no. 4: 742. https://doi.org/10.3390/app9040742.
26. Polacco G., Stastna J., Biondi D., Zanzotto L. Relation. Between Polymer Architecture and Nonlinear Viscoelastic Behaviour of Modified Asphalts. Curr. Opin. Colloid Interface Sci., 2006, 11: 230–245.
27. Rossi D., Filippi S., Merusi F., Giuliani F., Polacco G. Internal Structure of Bitumen/Polymer/Wax Ternary Mixtures for Warm Mix Asphalt. J. Appl. Polym. Sci., 2013, 129: 3341–335. https://doi.org/10.1002/app.39057.
28. Nejad F.M., Azarhoosh A., Hamedi G.H. Effect of high-density polyethylene on the fatigue and rutting performance of hot mix asphalt – a laboratory study. Road Materials and Pavement Design, 2014, 15, no. 3: 746–756. doi.org/10.1080/14680629.2013.876443.
29. Airey G. Rheological properties of styrene-butadiene-styrene polymer modified road bitumen’s. Fuel, 2003, 82, no. 14: 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.
30. Yang C., Xie J., Wu S., Amirkhanian S., Zhou X., Ye Q., Yang D., Hu R. Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Constr. Build. Mater. 2020, 235: 117437. https://doi.org/10.1016/j.conbuildmat.2019.117437.
31. Wang Y., Sun L., Qin Y. Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Constr. Build. Mater. 2015, 91: 47–56. doi.org/10.1016/j.conbuildmat.2015.05.014.
32. Kaya D., Topal A., McNally T. Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Constr. Build. Mater. 2019, 221: 345–350. https://doi.org/10.1016/j.conbuildmat.2019.06.081.
33. Kaya D., Topal A., Gupta J., McNally T. Aging effects on the composition and thermal properties of styrene-butadiene-styrene (SBS) modified bitumen. Constr. Build. Mater. 2020, 235: 117450. doi.org/10.1016/j.conbuildmat.2019.117450.
34. Nikolaides A. Highway Engineering Pavements, Materials and Control of Quality, 1st ed. Boca Raton: CRC Press Taylor & Francis, 2014. ISBN 9781466579972. https://doi.org/10.1201/b17690.
35. Jasso M., Hampl R., Vacin O., Bakos D., Stastna J., Zanzotto L. Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Process. Technol., 2015, 140: 172–179. https://doi.org/10.1016/j.fuproc.2015.09.002.
36. Pyshyev S., Gunk V., Grytsenko Y., Bratychack M. Polymer modified bitumen: Review. Chem. Chem. Technol. 2016, 10: 631–636. https://doi.org/10.23939/chcht10.04si.631
37. Dinnen A. Epoxy bitumen binders for critical road conditions. In book: Proceedings of the 2-nd Eurobitume, Cannes, France, 7–9 October 1981: 294–296.
38. Polacco G., Filippi S., Merusi F., Stastna G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci., 2015, 224: 72–112. https://doi.org/10.1016/j.cis.2015.07.010.
39. Kök B.V., Colak H. Laboratory comparison of crumb rubber and SBS modified bitumen and hot mix asphalt. Constr. Build. Mater. 2011, 25: 3204–3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005.
40. Wang H., You Z., Mills-Bealeb J., Haoa P. Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber. Constr. Build. Mater. 2012, 26: 583–590. https://doi.org/10.1016/j.conbuildmat.2011.06.061.
41. Mashaan N.S., Karim M.R. Waste tyre rubber in asphalt pavement modification. Mater. Res. Innov., 2014, 18, Suppl. 6: S6–S9. https://doi.org/10.1179/1432891714Z.000000000922.
42. Grechanovskii V.A., Poddubnyi Ya.I., Ivanova L.S. Molecular Structure and Macroscopic Properties of Synthetic Cis-Poly (Isoprene). Rubber Chem. Technol. 1974, 47: 342–356. https://doi.org/10.5254/1.3540444.
43. Flory P.J. Effects of Molecular Structure on Physical Properties of Butyl Rubber. Rubber Chem. Technol., 1946, 19: 552–598. https://doi.org/10.5254/1.3543214.
44. Olivares H.F., Schultz W.B., Fernandez A.M., Moro B.C. Rubber-modified Hot Mix Asphalt Pavement by Dry Process. Int. J. Pavement Eng, 2009, 10: 277–288. https://doi.org/10.1080/10298430802169416.
45. Hassan N.A., Airey G.D., Jaya R.P., Mashros N., Aziz M.M. A Review of Crumb Rubber Modification in Dry Mixed Rubberised Asphalt Mixtures. J. Teknol, 2014, 70: 127–134. https://doi.org/10.11113/jt.v70.3501.
46. Lo Presti D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater, 2013, 49: 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
47. Aglan H. Polymeric additives and their role in asphaltic pavements. Part I: Effect of additive type on the fracture and fatigue behavior. J. Elastomers Plast. 1993, 25: 307–321. https://doi.org/10.1177/009524439302500403.
48. Bonemazzi F., Braga V., Corrieri R., Giavarini C. Characteristics of polymers and polymer-modified binders. Transp. Res. Rec, 1996, 1535: 36–47. https://doi.org/10.1177/0361198196153500106.
49. Giavarini C., De Filippis P., Santarelli M.L., Scarsella M. Production of stable polypropylene-modified bitumens. Fuel, 1996, 75: 681–686. https://doi.org/10.1016/0016-2361(95)00312-6.
50. Rojo E., Fernàndez M., Pena J.J., Pena B. Rheological aspects of blends of metallocene-catalysed atactic polypropylenes with bitumen. Polym. Eng. Sci, 2004, 44: 1792–1799. https://doi.org/10.1002/pen.20181.
51. González O., Muñoz M.E., Santamaría A. Bitumen/polyethylene blends: Using m-LLDPEs to improve stability and viscoelastic properties. Rheol. Acta, 2006, 45: 603–610. https://doi.org/10.1007/s00397-005-0009-7.
52. Zhang F., Yu J., Wu S. Effect of ageing on rheological properties of storage-stable SBS/sulphur-modified asphalts. J. Hazard Mater, 2010, 182: 507–517. https://doi.org/10.1016/j.jhazmat.2010.06.061.
53. Zhang F., Yu J., Han J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS-and SBS/sulphur-modified asphalts. Constr. Build. Mater, 2011, 25: 129–137. https://doi.org/10.1016/j.conbuildmat.2010.06.048.
54. Masson J.-F., Gagné M. Polyphosphoric Acid (PPA)-Modified Bitumen: Disruption of the Asphaltenes Network Based on the Reaction of Non-basic Nitrogen with PPA. Energy Fuels, 2008, 22: 3402–3406. https://doi.org/10.1021/ef8002944.
55. Miknis F.P., Thomas K.P. NMR Analysis of Polyphosphoric Acid-modified Bitumens. Road Mater. Pavement Des, 2008, 9: 59–72. https://doi.org/10.1080/14680629.2008.9690107.
56. Kang Y., Wang F., Chen Z. Reaction of asphalt and maleic anhydride: Kinetics and mechanism. Chem. Eng. J, 2010, 164: 230–237. https://doi.org/10.1016/j.cej.2010.08.020.
57. Cong P., Chen S., Chen H. Preparation and properties of bitumen modified with the maleic anhydride grafted styrene-butadiene-styrene triblock copolymer. Polym. Eng. Sci, 2011, 51: 1273–1279. https://doi.org/10.1002/pen.21934.
58. Peng C., Chen P., You Z., Lv S., Zhang, R., Xu F., Zhang H., Chen H. Effect of silane coupling agent on improving the adhesive properties between asphalt binder and aggregates. Constr. Build. Mater. 2018, 169: 591–600. https://doi.org/10.1016/j.conbuildmat.2018.02.186.
59. Jasso M., Bakos D., MacLeod D., Zanzotto L. Preparation and properties of conventional asphalt modified by physical mixtures of linear SBS and montmorillonite clay. Constr. Build. Mater. 2013, 38: 759–765. https://doi.org/10.1016/j.conbuildmat.2012.09.043.
60. Zhang H.; Yu J.; Wang H., Xue L. Investigation of microstructures and ultraviolet aging properties of organo-montmorillonite/SBS modified bitumen. Mater. Chem. Phys. 2011, 129: 769–776. https://doi.org/10.1016/j.matchemphys.2011.04.078.
61. Navarro F.J., Partal P., Garcia-Morales M., Martin-Alfonso M.J., Martinez-Boza F., Gallegos C., Bordado J.C.M., Diogo, A.C. Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: A comparative analysis. J. Ind. Eng. Chem. 2009, 15: 458–464. https://doi.org/10.1016/j.jiec.2009.01.003.
62. Carrera V., Partal P., Garcia-Morales M., Gallegos C., Paez A. Influence of bitumen colloidal nature on the design of isocyanate-based bituminous products with enhanced rheological properties. Ind. Eng. Chem. Res., 2009, 48: 8464–8470. https://doi.org/10.1021/ie9004404.
63. Carrera V., Garcia-Morales M, Partal P., Gallegos C. Novel bitumen/isocyanate-based reactive polymer formulations for the paving industry. Rheol. Acta, 2010, 49: 563–572. https://doi.org/10.1007/s00397-009-0399-z.
64. Shivokhin M., Garcia-Morales M., Partal P., Cuadri A.A. Rheological behavior of polymer-modified bituminous mastics: A comparative analysis between physical and chemical modification. Constr. Build. Mater. 2012, 27: 234–240. https://doi.org/10.1016/j.conbuildmat.2011.07.055.
65. Gautam P. K., Kalla P., Jethoo A. S., Agrawal R., Singh H. Sustainable use of waste in flexible pavement: A review. Construction and Building Materials, 2018, 239–253. https://doi.org/10.1016/j.conbuildmat.2018.04.067.
66. Kashiyani B., Pitroda J., Umrigar F. Plastic waste opportunities for eco-friedly material of bituminous road construction. In book: Proceedings of National Conference CRDCE13, 20-21 December 2013, SVIT, Vasad, 2013.
67. Choudhary J., Kumar B., Gupta A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater, 2020, 234: 117271. https://doi.org/10.1016/j.conbuildmat.2019.117271.
68. Pururawagavhale, Abhitborkar, Siddheshgolande, Chaitanya Sole. Evaluation of Bituminous Mix Parameters with Addition of Plastic Waste. Journal of Engineering Research and Application, ISSN: 2248-9622, 2018, 8, no. 9 (Part -IV): 20–24.
69. Das A.K., Udgata G., Pan A.K. Flexible Pavements For Waste Plastic Disposal. International Journal of Civil Engineering and Technology (IJCIET), 2019, 10, no. 12: 339–344, http://www.iaeme.com/IJCIET/index.asp.
70. Kishchynskyi S., Nagaychuk V., Bezugly A. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition. Procedia Engineering, 2016, 143: 119–127. https://doi.org/10.1016/j.proeng.2016.06.016.
71. Satayeva S., Аbdrakhmanova A., Kurmangaliyeva A. Study of performance properties of an asphalt modified with polyethylen. Chemical Bulletin of Kazakh National University, 2018, no. 4: 24–30. https://doi.org/https://doi.org/10.15328/cb1028.
72. Costa L.M.B., Silva H. M.R.D., Oliveira J. R.M., Fernandes S. R.M. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. International Journal of Pavement Research and Technology, 2013, 6, no. 4: 457–464.
73. Xiao F., Amirkhanian S. N., Shen J., Putman B. Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Constr. Build. Mater. 2008, 23, no. 2: 1028–1034. https://doi.org/10.1016/j.conbuildmat.2008.05.002.
74. Wang H., Liu X., Apostolidis P., Scarpas T. Rheological behavior and its chemical interpretation of crumb rubber modified asphalt containing warm-mix additives. Transportation research record: Journal of the transportation research board, 2018, 2672, no. 28: 337–348. doi.org/10.1177/0361198118781376.
75. Sharma S., Goel A. A study on fractional replacement of bitumen with crumb rubber. IJCIET, 2019, 10, no. 03: 1487–1495. http://www.iaeme.com/IJCIET/index.asp.
76. Kök B. V., Yilmaz M., Geçkil A. Evaluation of Low-Temperature and Elastic Properties of Crumb Rubber and SBS-Modified Bitumen and Mixtures. Journal of Materials in Civil Engineering, 2013, 25, no. 2: 257–265. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000590.
77. Parmar A., Patel D.M., Kotak B., Shah P., Katriya B. Flexible Pavement of 80/100 Penetration Bitumin Grade using Crumb Rubber and Fly Ash. International Journal for Innovative Research in Science & Technology. 2014, 1, no. 6: 167–169.
78. Brajesh Mishra, Gupta M.K. Use of Fly Ash Plastic Waste composite in Bituminous Concrete Mixes of Flexible Pavement. American Journal of Engineering Research, 2017, 6, no. 9: 253–262.
79. Onyango F., Wanjala S. R., Ndege M., Masu L. Effect of rubber tyre and plastic wastes use in asphalt concrete pavement. Int. J. Civil. Environ. Eng., 2015, 9, no. 11: 1403–1407. https://publications.waset.org/pdf/10002602.
80. Ghulamsakhi A., Amit G. Use of Waste Plastic, Waste Rubber and Fly Ash in Bituminous Mixes. Indian Journal of Science and Technology, 2018, 11, no. 28, doi.org/10.17485/ijst/2018/v11i28/130784.
81. Kanna N.S. Comparative performance evaluation of pmb & crmb with partial replacement of bitumen (vg-30) using marshal mix design method, review. International Journal of Recent Advances in Science and Technology, 2018, 5, no. 2: 36–43. https://doi.org/10.30750/ijarst.527.
82. Lhwaint A. A. A., Mochtar I.B. Hot Mix Asphalt Modified With Crumbrubber Design and Developmentproperties from Different Sources Oftire Wastes. IJCIET, 2019, 10, no. 10: 289–304, http://www.iaeme.com/IJCIET/index.asp.
83. Mohammed B. S., Adamu M., Shafiq N. A review on the effect of crumb rubber on the properties of rubbercrete. International Journal of Civil Engineering and Technology, 2017, 8, no. 9: 599–615.
84. Magdi Z. Effect of Crumb Rubber Modifiers (CRM) on Characteristics of Asphalt Binders in Sudan. International Journal of Materials Science and Applications. 2017, 6, no. 2-1: 1–6. doi:10.11648/j.ijmsa.s.2017060201.11.
85. Chhabra R.S., Marik S. A Review Literature on the Use of Waste Plastics and Waste Rubber Tires in Pavement. IJCEM, 2014; 1, no. 1: 1–5.
86. Ahmedzade P., Günay T., Altun S., Kultayev B., Fainleib A., Grigoryeva O., Starostenko O. Usage of ion-irradiated recycled polypropylene as modifier in bituminous binder. In book: Bearing Capacity of Roads, Railways and Airfields. A. Loizos et al. (Eds), London: CRC Press, 2017: 397–401. ISBN 978-1-138-29595-7. https://doi.org/10.1201/9781315100333.
87. Fainleib O.M, Ahmedzade P., Starostenko O.M., Sakhno V.I., Kultyaev B., Danylenko I.Y., Gunay T., Kovalinska T.V., Hryhorieva O.P. Polymer bitumen composition. Ukrainian Patent 107760, February 10, 2015.
88. Ahmedzade P., Fainleib, A., Gunay T., Grigoryeva O., Kultayev B., Starostenko O. Influence of Ion Irradiated Recycled Polyethylene on Physical Properties of Bituminous Binder. Advanced Materials Research, 2015, 1125: 360–364. https://doi.org/10.4028/www.scientific.net/AMR.1125.360.
89. Fainleib O.M, Ahmedzade P., Starostenko O.M., Sakhno V.I., Kultyaev B., Danylenko I.Y., Gunay T., Kovalinska T.V., Hryhorieva O.P. Polymer bitumen composition. Ukrainian Patent 108432, April 27, 2015.
90. Fainleib O.M, Ahmedzade P., Starostenko O.M., Sakhno V.I., Kultyaev B., Danylenko I.Y., Gunay T., Kovalinska T.V., Hryhorieva O.P. Polymer bitumen composition. Ukrainian Patent 108434, April 27, 2015.
91. Ahmedzade P., Fainleib A., Günay T., Grygoryeva O. Modification of Bitumen by Electron Beam Irradiated Recycled Low Density Polyethylene. Constr. Build. Mater., 2014, 69: 1–9. https://doi.org/10.1016/j.conbuildmat.2014.07.027.
92. Fainleib O.M,. Ahmedzade P., Starostenko O.M., Sakhno V.I., Kultyaev B., Danylenko I.Y., Gunay T., Kovalinska T.V., Hryhorieva O.P. Polymer bitumen composition. Ukrainian Patent 108433, April 27, 2015.
93. Ahmedzade P., Fainleib А., Günay Т., Starostenko O., Kovalinska T. Effect of Gamma Irradiated Recycled Low Density Polyethylene on the High and Low Temperature Properties of Bitumen. Intern. J. Polym. Sci., 2013, 2013: 141298. https://doi.org/10.1155/2013/141298.
94. Kasanagh S.H., Ahmedzade P., Fainleib A., Günay T. Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber. WASET Int. J. Civil and Environ. Eng., 2018, 12, №6: 599–603.
95. Hryhorieva O.P., Ahmedzade P., Kasanagh S. H., Starostenko O.M., Fainleib O.M. Extension of the pavement service life by bitumen modification with thermoplastic dynamic vulcanizates based on polymer wastes. Polymer journal, 2019, XLI, № 4: 253–261. https://doi.org/10.15407/polymerj.41.04.253.
96. Hassanpour-Kasanagh S., Ahmedzade P., Fainleib A.M., Behnood A. Rheological properties of asphalt binders modified with recycled materials: A comparison with Styrene-Butadiene-Styrene (SBS). Constr. Build. Mater., 2020, 230: 117047. https://doi.org/10.1016/j.conbuildmat.2019.117047
97. Ahmedzade P., Fainleib A., Günay T., Grigoryeva O., Kultayev B., Starostenko O., Sakhno V. Use of maleic anhydride grafted recycled polyethylene treated by irradiation in bitumen modification. E&E Congress 6th Eurasphalt & Eurobitume Congress | 1-3 June 2016 | Prague, Czech Republic. https://doi.org/10.14311/EE.2016.155.
98. Fang C., Yu R., Liu S., Li Y. Nanomaterials Applied in Asphalt Modification: A Review. J. Mater. Sci. Technol., 2013, 29, no. 7: 589–594. https://doi.org/10.1016/j.jmst.2013.04.008.
99. Yao H., You Z. Effectiveness of Micro- and Nanomaterials in Asphalt Mixtures through Dynamic Modulus and Rutting Tests. Journal of Nanomaterials, 2016, 2016: Article ID 2645250, 14 p. https://doi.org/10.1155/2016/2645250.
100. Tabatabaie K., Tabatabaie F. Assessment of Nanomaterials Use in Asphalt. International Journal of Constructive Research in Civil Engineering, 2019, 5, no. 4: 6–12. doi.org/10.20431/2454-8693.0504002.
101. Crucho J., Picado-Santos L., Neves J., Capitão S. Review of Nanomaterials’ Effect on Mechanical Performance and Aging of Asphalt Mixtures. Appl. Sci., 2019, 9, no. 18: 36–57. https://doi.org/10.3390/app9183657.
102. Tanzadeh J., Vahedi F., Kheiry P.T., Tanzadeh R. Laboratory Study on the Effect of Nano TiO2 on Rutting Performance of Asphalt Pavements. Advanced Materials Research, 2012, 622–623: 990–994. https://doi.org/10.4028/www.scientific.net/AMR.622-623.990.
103. Ye C., Chen H. Study on road performance of nano-SiO2 and nano-TiO2 modified asphalt. New Building Materials, 2009, no.. 6: 82–84.
104. Li L., Yang L., Lin Y., Zhang X. A Compressive Review on High- and Low-Temperature Performance of Asphalt Modified with Nanomodifier. Advances in Materials Science and Engineering, 2021, 2021: 5525459. https://doi.org/10.1155/2021/5525459.
105. Taherkhani H., Afroozi S. Investigating the Performance Characteristics of Asphaltic Concrete Containing Nano-Silica. CEIJ, 2017, 50, no. 1: 75–93. doi.org/10.7508/ceij.2017.01.005.
106. Yu J., Zeng X., Wu S., Wang L., Liu G. Preparation and properties of montmorillonite modified asphalts. Mater. Sci. Eng., A, 2007, 447: 233–238. https://doi.org/10.1016/j.msea.2006.10.037.
107. Wang D., Liu Q., Yang Q., Tovar C., Tan Y., Oeser M. Thermal oxidative and ultraviolet ageing behaviour of nano-montmorillonite modified bitumen, Road Materials and Pavement Design, 2021, 22, no. 1: 121–139. doi.org/10.1080/14680629.2019.1619619.
108. Zahedi M., Barati M., Zarei M. Evaluation the Effect of Carbon Nanotube on the Rheological and Mechanical Properties of Bitumen and Hot Mix Asphalt (HMA). Electronic Journal of Structural Engineering, 2017, 17, no. 1: 76-84.
109. Ziari H., Farahani H., Goli A., & Sadeghpour Galooyak S. The Investigation of the Impact of Carbon Nano Tube on Bitumen and HMA Performance. Pet. Sci. Technol., 2014, 32, no. 17: 2102–2108. https://doi.org/10.1080/10916466.2013.763827.
110. Faramarzi M., Arabani M., Haghi A.K., Mottaghitalab V. Carbon nanotubes-modified asphalt binder: Preparation and characterization. International Journal of Pavement Research and Technology, 2015, 8, no. 1: 29–37, https://doi.org/10.6135/ijprt.org.tw/2015.8(1).29.
111. ul Haq M. F., Ahmad N., Jamal M., Anwar W., Kitbag A., Husain S. Carbon Nanotubes and Their Use for Asphalt Binder Modification: A Review. Emerging Materials Research, 2020, 9, no. 2: 234–247. https://doi.org/10.1680/jemmr.18.00115.
112. ul Haq M.F., Ahmad N., Nasir M.A., Jamal M., Hafeez M., Rafi J., Zaidi S.B.A., Haroon W. Carbon Nanotubes (CNTs) in Asphalt Binder: Homogeneous Dispersion and Performance Enhancement. Appl. Sci., 2018, 8, no. 12: 26–51. doi.org/10.3390/app8122651.
113. Wu S., Tahri O. State-of-art carbon and graphene family nanomaterials for asphalt modification. Road materials and pavement design, 2021, 22, no. 4: 735–756. https://doi.org/10.1080/14680629.2019.1642946.
114. Shekhovtsova S. Yu. Effective asphalt concrete based on nanomodified polymer-bitumen binder. Thesis. Belgorod, 2016. 192 p. (Rus.).