2017 (1) 5

https://doi.org/10.15407/polymerj.39.01.39

The structure and thermomechanical properties of polyelectrolyte complexes based on carboxymethylcellulose and polyethyleneimine

 

V.L. Demchenko, V.I. Shtompel’, L.A. Goncharenko

 

Institute of Macromolecular Chemistry, NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, No. 1: 39-43.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

 

The polyelectrolyte complexes (PEC) from oppositely charged polyelectrolytes – sodium salt of carboxymethyl cellulose and polyethyleneimine hydrochloride at various molar ratios were obtained. The structural organization and thermomechanical properties of the prepared PEC were investigated by means of wide-angle X-ray scattering and thermomechanical analysis. A positive deviation of the experimental values of the glass transition temperature from the calculated ones, according to an additive principle, was revealed for the investigated PEC, which is a proof of the PEC formation. It is shown that the concentration dependence of the attains the maximum value for the stoichiometric composition of the PEC. The structure and thermomechanical behavior of the obtained polyelectrolyte complexes of different compositions vary from those of the initial polyelectrolytes. This effect was explained by the formation of interpolymeric ionic groups and cooperative electrostatic interaction between the anionic and cationic polyelectrolyte.

 

Key words: carboxymethylcellulose, polyethyleneimine, polyelectrolyte complexes, structure, thermomechanical properties.

 

Література

  1. 1. Demchenko V.L. Polyelectrolyte complexes based on pectin, and poly(4-vinylpyridine): structure and thermomechanical properties, Polym. J., 2016, 38, no. 1: 34–39.
    https://doi.org/10.15407/polymerj.38.01.034
     
    2. Shtompel’ V.I., Sasa B.S., Riabov S.V., Kercha Yu.Yu., Titov G.V. Polyelectrolyte complexes based on Na-carboxymethylcellulose and polyethyleneimine chloride: identification and structure, Polym. J., 2010, 32, no. 3: 204–209.
     
    3. Dinu I.A., Mihai M., Dragan E.S. Comparative study on the formation and flocculation properties of polyelectrolyte complex dispersions based on synthetic and natural polycations, Chem. Eng. J., 2010, 160, no. 1: 115–121.
    https://doi.org/10.1016/j.cej.2010.03.018
     
    4. Moller M., Nordmeier E. Polyelectrolyte complexes formed by poly (diallyl-N, N-dimethylammoniumchloride) and oligo (dextransulphate), Eur. Polym J., 2002, 38, no. 3: 445–450.
    https://doi.org/10.1016/S0014-3057(01)00203-8
     
    5. Said A. E.-H. A. Radiation synthesis of interpolymer polyelectrolyte complex and its application as carrier for colon-specific drag delivery system, Biomaterials, 2005, 26, no. 15: 2733–2739.
    https://doi.org/10.1016/j.biomaterials.2004.07.049
     
    6. Lebedeva O.V., Kim B.S., Vasilev K., Vinogradova O.I. Salt softening of polyelectrolyte multilayer microcapsules, J. Coll. Int. Sci., 2005, 284, no. 2: 455–462.
    https://doi.org/10.1016/j.jcis.2004.10.040
     
    7. Kabanov A.V., Kabanov V.A. Interpolijelektrolitnye kompleksy nukleinovyh kislot kak sredstvo dostavki geneticheskogo materiala v kletku, Vysokomol. soedin. Ser. A, 1994, 36, no. 2: 198–211.
     
    8. Kabanov V.A. Fundamentals of polyelectrolyte complex in solution and the bulk, Ed. by G. Deher, J.B. Schlenoff, Multilater thin films, Weinheim: Wiley–VCH, 2003: 47–86.
     
    9. Chelushkin P.S. Interpolijelektrolitnye kompleksy amfifil’nyh ionogennyh blok–sopolimerov i protivopolozhno zarjazhennyh linejnyh polijelektrolitov: avtoref. dis. na soisk. nauchn. step. kand. him. nauk: spec. 02.00.06. “Vysokomolek. soed. po him. naukam”, Moskva, 2007: 24.
     
    10. Kabanov V.A., Zezin A.B., Kasaikin V.A., Jaroslavov A. A., Topchiev D.A. Polijelektrolity v reshenii jekologicheskih problem, Uspehi himii, 1991, 60, no. 3: 595–601.
     
    11. Demchenko V., Shtompel’ V., Riabov S. Nanocomposites based on interpolyelectrolyte complex and Cu/Cu2O core–shell nanoparticles: Structure, thermomechanical and electric properties, Eur. Polym. J., 2016, 75: 310–316.
    https://doi.org/10.1016/j.eurpolymj.2016.01.004
     
    12. Zezin A.A. Synthesis of Hybrid Materials in Polyelectrolyte Matrixes: Control over Sizes and Spatial Organization of Metallic Nanostructures, Polym. Sci. C, 2016, 58: 118–130.
    https://doi.org/10.1134/S1811238216010136
     
    13. Demchenko V.L., Riabov S.V., Shtompel’ V.I., Rybalchenko N.P. Strukturna organizacija ta antimikrobna aktivnist’ nanokompozitiv na osnovi pektinu, polietileniminu ta nanochastinok midi chi sribla, VIII vidkrita Ukraїns’ka konferencija molodih vchenih z visokomolekuljarnih spoluk: tezi dopovidej, Kyiv, 2016: 44–45.
     
    14. Kwei T.K. The effect of hydrogen bonding on the glass transition tempera- tures of polymer mixtures, J. Polym. Sci: Polym. Lett., 1984, 22, no. 6: 307–313.